Abstract

We propose an easy and efficient way to analytically design densely dispersion-managed fiber systems for ultrafast optical communications. This analytical design is based on the exact solution of the variational equations derived from the nonlinear Schrödinger equation by use of either a Gaussian or a raised-cosine (RC) Ansatz. For the input pulses of dispersion-managed optical fiber transmission systems we consider a RC profile and show that RC return-to-zero pulses are as effective as Gaussian pulses in high-speed (160-Gbits/s) long-distance transmissions.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Berlin, 1998).
  2. M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Recent progress in soliton transmission technology,” Chaos 10, 486–514 (2000).
    [CrossRef]
  3. A. Maruta, Y. Yamamoto, S. Okamoto, A. Suzuki, T. Morita, A. Agata, and A. Hasegawa, “Effectiveness of densely dispersion managed solitons in ultra-high speed transmission,” Electron. Lett. 36, 1947–1949 (2000).
    [CrossRef]
  4. L. J. Richardson, W. Forysiak, and N. J. Doran, “Trans-oceanic 160-Gbit/s single-channel transmission using short-period dispersion management,” IEEE Photonics Technol. Lett. 13, 209–211 (2001).
    [CrossRef]
  5. A. H. Liang, H. Toda, and A. Hasegawa, “High-speed soliton transmission in dense periodic fibers,” Opt. Lett. 24, 799–801 (1999).
    [CrossRef]
  6. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion,” Electron. Lett. 33, 1726–1727 (1997).
    [CrossRef]
  7. K. Nakkeeran, A. B. Moubissi, P. Tchofo Dinda, and S. Wabnitz, “Analytical method for designing dispersion-managed fiber systems,” Opt. Lett. 26, 1544–1546 (2001).
    [CrossRef]
  8. A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, “Average dispersion decreasing densely dispersion-managed fiber transmission systems,” IEEE Photonics Technol. Lett. 14, 1279–1281 (2002).
    [CrossRef]
  9. P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, “Collective variable theory for solitons in optical fibers,” Phys. Rev. E 64, 016608 (2001).
    [CrossRef]
  10. K. Nakkeeran, A. B. Moubissi, and P. Tchofo Dinda, “Analytical design of dispersion-managed fiber system with map strength 1.65,” Phys. Lett. A 308, 417–425 (2003).
    [CrossRef]
  11. A. Berntson, N. J. Doran, W. Forysiak, and J. H. B. Nijhof, “Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion,” Opt. Lett. 23, 900–902 (1998).
    [CrossRef]
  12. T. Yu, E. A. Golovchenko, A. N. Pilipetskii, and C. R. Menyuk, “Dispersion-managed soliton interactions in optical fibers,” Opt. Lett. 22, 793–795 (1997).
    [CrossRef] [PubMed]
  13. B. A. Malomed, “Suppression of soliton jitter and interactions by means of dispersion management,” Opt. Commun. 147, 157–162 (1998).
    [CrossRef]
  14. M. Zitelli, B. Malomed, F. Matera, and M. Settembre, “Strong time jitter reduction using solitons in ‘1/z’ dispersion managed fiber links,” Opt. Commun. 154, 273–276 (1998).
    [CrossRef]
  15. A. J. Stentz, R. W. Boyd, and A. F. Evans, “Dramatically improved transmission of ultrashort solitons through 40 km of dispersion-decreasing fiber,” Opt. Lett. 20, 1770–1772 (1995).
    [CrossRef] [PubMed]
  16. S. Kawai, K. I. Suzuki, and K. Iwatsuki, “Ultra-high speed long distance nonlinear waveform reshaping transmission using adiabatic soliton compression and narrowband sliding-frequency filter,” Electron. Lett. 32, 2170–2171 (1996).
    [CrossRef]
  17. T. Georges and B. Charbonnier, “Continuum generated by chromatic dispersion and power variations in periodically amplified soliton links,” Opt. Lett. 21, 1232–1234 (1996).
    [CrossRef] [PubMed]
  18. P. Tchofo Dinda, A. Labruyère, K. Nakkeeran, J. Fatome, A. B. Moubissi, S. Pitois, and G. Millot, “On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication,” Ann. Telecommun. 58, 1785–1808 (2003).
  19. A. Labruyère, P. Tchofo Dinda, K. Nakkeeran, and A. B. Moubissi, “Feasibility of N×160 Gbit/s ultra-long haul transmissions in densely dispersion-managed optical fiber systems,” submitted to Opt. Commun.

2003

K. Nakkeeran, A. B. Moubissi, and P. Tchofo Dinda, “Analytical design of dispersion-managed fiber system with map strength 1.65,” Phys. Lett. A 308, 417–425 (2003).
[CrossRef]

P. Tchofo Dinda, A. Labruyère, K. Nakkeeran, J. Fatome, A. B. Moubissi, S. Pitois, and G. Millot, “On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication,” Ann. Telecommun. 58, 1785–1808 (2003).

2002

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, “Average dispersion decreasing densely dispersion-managed fiber transmission systems,” IEEE Photonics Technol. Lett. 14, 1279–1281 (2002).
[CrossRef]

2001

P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, “Collective variable theory for solitons in optical fibers,” Phys. Rev. E 64, 016608 (2001).
[CrossRef]

L. J. Richardson, W. Forysiak, and N. J. Doran, “Trans-oceanic 160-Gbit/s single-channel transmission using short-period dispersion management,” IEEE Photonics Technol. Lett. 13, 209–211 (2001).
[CrossRef]

K. Nakkeeran, A. B. Moubissi, P. Tchofo Dinda, and S. Wabnitz, “Analytical method for designing dispersion-managed fiber systems,” Opt. Lett. 26, 1544–1546 (2001).
[CrossRef]

2000

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Recent progress in soliton transmission technology,” Chaos 10, 486–514 (2000).
[CrossRef]

A. Maruta, Y. Yamamoto, S. Okamoto, A. Suzuki, T. Morita, A. Agata, and A. Hasegawa, “Effectiveness of densely dispersion managed solitons in ultra-high speed transmission,” Electron. Lett. 36, 1947–1949 (2000).
[CrossRef]

1999

1998

A. Berntson, N. J. Doran, W. Forysiak, and J. H. B. Nijhof, “Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion,” Opt. Lett. 23, 900–902 (1998).
[CrossRef]

B. A. Malomed, “Suppression of soliton jitter and interactions by means of dispersion management,” Opt. Commun. 147, 157–162 (1998).
[CrossRef]

M. Zitelli, B. Malomed, F. Matera, and M. Settembre, “Strong time jitter reduction using solitons in ‘1/z’ dispersion managed fiber links,” Opt. Commun. 154, 273–276 (1998).
[CrossRef]

1997

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion,” Electron. Lett. 33, 1726–1727 (1997).
[CrossRef]

T. Yu, E. A. Golovchenko, A. N. Pilipetskii, and C. R. Menyuk, “Dispersion-managed soliton interactions in optical fibers,” Opt. Lett. 22, 793–795 (1997).
[CrossRef] [PubMed]

1996

T. Georges and B. Charbonnier, “Continuum generated by chromatic dispersion and power variations in periodically amplified soliton links,” Opt. Lett. 21, 1232–1234 (1996).
[CrossRef] [PubMed]

S. Kawai, K. I. Suzuki, and K. Iwatsuki, “Ultra-high speed long distance nonlinear waveform reshaping transmission using adiabatic soliton compression and narrowband sliding-frequency filter,” Electron. Lett. 32, 2170–2171 (1996).
[CrossRef]

1995

Agata, A.

A. Maruta, Y. Yamamoto, S. Okamoto, A. Suzuki, T. Morita, A. Agata, and A. Hasegawa, “Effectiveness of densely dispersion managed solitons in ultra-high speed transmission,” Electron. Lett. 36, 1947–1949 (2000).
[CrossRef]

Berntson, A.

Boyd, R. W.

Charbonnier, B.

Doran, N. J.

L. J. Richardson, W. Forysiak, and N. J. Doran, “Trans-oceanic 160-Gbit/s single-channel transmission using short-period dispersion management,” IEEE Photonics Technol. Lett. 13, 209–211 (2001).
[CrossRef]

A. Berntson, N. J. Doran, W. Forysiak, and J. H. B. Nijhof, “Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion,” Opt. Lett. 23, 900–902 (1998).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion,” Electron. Lett. 33, 1726–1727 (1997).
[CrossRef]

Evans, A. F.

Fatome, J.

P. Tchofo Dinda, A. Labruyère, K. Nakkeeran, J. Fatome, A. B. Moubissi, S. Pitois, and G. Millot, “On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication,” Ann. Telecommun. 58, 1785–1808 (2003).

Forysiak, W.

L. J. Richardson, W. Forysiak, and N. J. Doran, “Trans-oceanic 160-Gbit/s single-channel transmission using short-period dispersion management,” IEEE Photonics Technol. Lett. 13, 209–211 (2001).
[CrossRef]

A. Berntson, N. J. Doran, W. Forysiak, and J. H. B. Nijhof, “Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion,” Opt. Lett. 23, 900–902 (1998).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion,” Electron. Lett. 33, 1726–1727 (1997).
[CrossRef]

Georges, T.

Golovchenko, E. A.

Hasegawa, A.

A. Maruta, Y. Yamamoto, S. Okamoto, A. Suzuki, T. Morita, A. Agata, and A. Hasegawa, “Effectiveness of densely dispersion managed solitons in ultra-high speed transmission,” Electron. Lett. 36, 1947–1949 (2000).
[CrossRef]

A. H. Liang, H. Toda, and A. Hasegawa, “High-speed soliton transmission in dense periodic fibers,” Opt. Lett. 24, 799–801 (1999).
[CrossRef]

Iwatsuki, K.

S. Kawai, K. I. Suzuki, and K. Iwatsuki, “Ultra-high speed long distance nonlinear waveform reshaping transmission using adiabatic soliton compression and narrowband sliding-frequency filter,” Electron. Lett. 32, 2170–2171 (1996).
[CrossRef]

Kawai, S.

S. Kawai, K. I. Suzuki, and K. Iwatsuki, “Ultra-high speed long distance nonlinear waveform reshaping transmission using adiabatic soliton compression and narrowband sliding-frequency filter,” Electron. Lett. 32, 2170–2171 (1996).
[CrossRef]

Knox, F. M.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion,” Electron. Lett. 33, 1726–1727 (1997).
[CrossRef]

Kubota, H.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Recent progress in soliton transmission technology,” Chaos 10, 486–514 (2000).
[CrossRef]

Labruyère, A.

P. Tchofo Dinda, A. Labruyère, K. Nakkeeran, J. Fatome, A. B. Moubissi, S. Pitois, and G. Millot, “On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication,” Ann. Telecommun. 58, 1785–1808 (2003).

Liang, A. H.

Malomed, B.

M. Zitelli, B. Malomed, F. Matera, and M. Settembre, “Strong time jitter reduction using solitons in ‘1/z’ dispersion managed fiber links,” Opt. Commun. 154, 273–276 (1998).
[CrossRef]

Malomed, B. A.

B. A. Malomed, “Suppression of soliton jitter and interactions by means of dispersion management,” Opt. Commun. 147, 157–162 (1998).
[CrossRef]

Maruta, A.

A. Maruta, Y. Yamamoto, S. Okamoto, A. Suzuki, T. Morita, A. Agata, and A. Hasegawa, “Effectiveness of densely dispersion managed solitons in ultra-high speed transmission,” Electron. Lett. 36, 1947–1949 (2000).
[CrossRef]

Matera, F.

M. Zitelli, B. Malomed, F. Matera, and M. Settembre, “Strong time jitter reduction using solitons in ‘1/z’ dispersion managed fiber links,” Opt. Commun. 154, 273–276 (1998).
[CrossRef]

Menyuk, C. R.

Millot, G.

P. Tchofo Dinda, A. Labruyère, K. Nakkeeran, J. Fatome, A. B. Moubissi, S. Pitois, and G. Millot, “On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication,” Ann. Telecommun. 58, 1785–1808 (2003).

Morita, T.

A. Maruta, Y. Yamamoto, S. Okamoto, A. Suzuki, T. Morita, A. Agata, and A. Hasegawa, “Effectiveness of densely dispersion managed solitons in ultra-high speed transmission,” Electron. Lett. 36, 1947–1949 (2000).
[CrossRef]

Moubissi, A. B.

P. Tchofo Dinda, A. Labruyère, K. Nakkeeran, J. Fatome, A. B. Moubissi, S. Pitois, and G. Millot, “On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication,” Ann. Telecommun. 58, 1785–1808 (2003).

K. Nakkeeran, A. B. Moubissi, and P. Tchofo Dinda, “Analytical design of dispersion-managed fiber system with map strength 1.65,” Phys. Lett. A 308, 417–425 (2003).
[CrossRef]

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, “Average dispersion decreasing densely dispersion-managed fiber transmission systems,” IEEE Photonics Technol. Lett. 14, 1279–1281 (2002).
[CrossRef]

P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, “Collective variable theory for solitons in optical fibers,” Phys. Rev. E 64, 016608 (2001).
[CrossRef]

K. Nakkeeran, A. B. Moubissi, P. Tchofo Dinda, and S. Wabnitz, “Analytical method for designing dispersion-managed fiber systems,” Opt. Lett. 26, 1544–1546 (2001).
[CrossRef]

Nakazawa, M.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Recent progress in soliton transmission technology,” Chaos 10, 486–514 (2000).
[CrossRef]

Nakkeeran, K.

K. Nakkeeran, A. B. Moubissi, and P. Tchofo Dinda, “Analytical design of dispersion-managed fiber system with map strength 1.65,” Phys. Lett. A 308, 417–425 (2003).
[CrossRef]

P. Tchofo Dinda, A. Labruyère, K. Nakkeeran, J. Fatome, A. B. Moubissi, S. Pitois, and G. Millot, “On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication,” Ann. Telecommun. 58, 1785–1808 (2003).

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, “Average dispersion decreasing densely dispersion-managed fiber transmission systems,” IEEE Photonics Technol. Lett. 14, 1279–1281 (2002).
[CrossRef]

P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, “Collective variable theory for solitons in optical fibers,” Phys. Rev. E 64, 016608 (2001).
[CrossRef]

K. Nakkeeran, A. B. Moubissi, P. Tchofo Dinda, and S. Wabnitz, “Analytical method for designing dispersion-managed fiber systems,” Opt. Lett. 26, 1544–1546 (2001).
[CrossRef]

Nijhof, J. H. B.

A. Berntson, N. J. Doran, W. Forysiak, and J. H. B. Nijhof, “Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion,” Opt. Lett. 23, 900–902 (1998).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion,” Electron. Lett. 33, 1726–1727 (1997).
[CrossRef]

Okamoto, S.

A. Maruta, Y. Yamamoto, S. Okamoto, A. Suzuki, T. Morita, A. Agata, and A. Hasegawa, “Effectiveness of densely dispersion managed solitons in ultra-high speed transmission,” Electron. Lett. 36, 1947–1949 (2000).
[CrossRef]

Pilipetskii, A. N.

Pitois, S.

P. Tchofo Dinda, A. Labruyère, K. Nakkeeran, J. Fatome, A. B. Moubissi, S. Pitois, and G. Millot, “On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication,” Ann. Telecommun. 58, 1785–1808 (2003).

Richardson, L. J.

L. J. Richardson, W. Forysiak, and N. J. Doran, “Trans-oceanic 160-Gbit/s single-channel transmission using short-period dispersion management,” IEEE Photonics Technol. Lett. 13, 209–211 (2001).
[CrossRef]

Sahara, A.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Recent progress in soliton transmission technology,” Chaos 10, 486–514 (2000).
[CrossRef]

Settembre, M.

M. Zitelli, B. Malomed, F. Matera, and M. Settembre, “Strong time jitter reduction using solitons in ‘1/z’ dispersion managed fiber links,” Opt. Commun. 154, 273–276 (1998).
[CrossRef]

Stentz, A. J.

Suzuki, A.

A. Maruta, Y. Yamamoto, S. Okamoto, A. Suzuki, T. Morita, A. Agata, and A. Hasegawa, “Effectiveness of densely dispersion managed solitons in ultra-high speed transmission,” Electron. Lett. 36, 1947–1949 (2000).
[CrossRef]

Suzuki, K.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Recent progress in soliton transmission technology,” Chaos 10, 486–514 (2000).
[CrossRef]

Suzuki, K. I.

S. Kawai, K. I. Suzuki, and K. Iwatsuki, “Ultra-high speed long distance nonlinear waveform reshaping transmission using adiabatic soliton compression and narrowband sliding-frequency filter,” Electron. Lett. 32, 2170–2171 (1996).
[CrossRef]

Tchofo Dinda, P.

P. Tchofo Dinda, A. Labruyère, K. Nakkeeran, J. Fatome, A. B. Moubissi, S. Pitois, and G. Millot, “On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication,” Ann. Telecommun. 58, 1785–1808 (2003).

K. Nakkeeran, A. B. Moubissi, and P. Tchofo Dinda, “Analytical design of dispersion-managed fiber system with map strength 1.65,” Phys. Lett. A 308, 417–425 (2003).
[CrossRef]

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, “Average dispersion decreasing densely dispersion-managed fiber transmission systems,” IEEE Photonics Technol. Lett. 14, 1279–1281 (2002).
[CrossRef]

P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, “Collective variable theory for solitons in optical fibers,” Phys. Rev. E 64, 016608 (2001).
[CrossRef]

K. Nakkeeran, A. B. Moubissi, P. Tchofo Dinda, and S. Wabnitz, “Analytical method for designing dispersion-managed fiber systems,” Opt. Lett. 26, 1544–1546 (2001).
[CrossRef]

Toda, H.

Wabnitz, S.

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, “Average dispersion decreasing densely dispersion-managed fiber transmission systems,” IEEE Photonics Technol. Lett. 14, 1279–1281 (2002).
[CrossRef]

K. Nakkeeran, A. B. Moubissi, P. Tchofo Dinda, and S. Wabnitz, “Analytical method for designing dispersion-managed fiber systems,” Opt. Lett. 26, 1544–1546 (2001).
[CrossRef]

Yamada, E.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Recent progress in soliton transmission technology,” Chaos 10, 486–514 (2000).
[CrossRef]

Yamamoto, Y.

A. Maruta, Y. Yamamoto, S. Okamoto, A. Suzuki, T. Morita, A. Agata, and A. Hasegawa, “Effectiveness of densely dispersion managed solitons in ultra-high speed transmission,” Electron. Lett. 36, 1947–1949 (2000).
[CrossRef]

Yu, T.

Zitelli, M.

M. Zitelli, B. Malomed, F. Matera, and M. Settembre, “Strong time jitter reduction using solitons in ‘1/z’ dispersion managed fiber links,” Opt. Commun. 154, 273–276 (1998).
[CrossRef]

Ann. Telecommun.

P. Tchofo Dinda, A. Labruyère, K. Nakkeeran, J. Fatome, A. B. Moubissi, S. Pitois, and G. Millot, “On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication,” Ann. Telecommun. 58, 1785–1808 (2003).

Chaos

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Recent progress in soliton transmission technology,” Chaos 10, 486–514 (2000).
[CrossRef]

Electron. Lett.

A. Maruta, Y. Yamamoto, S. Okamoto, A. Suzuki, T. Morita, A. Agata, and A. Hasegawa, “Effectiveness of densely dispersion managed solitons in ultra-high speed transmission,” Electron. Lett. 36, 1947–1949 (2000).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion,” Electron. Lett. 33, 1726–1727 (1997).
[CrossRef]

S. Kawai, K. I. Suzuki, and K. Iwatsuki, “Ultra-high speed long distance nonlinear waveform reshaping transmission using adiabatic soliton compression and narrowband sliding-frequency filter,” Electron. Lett. 32, 2170–2171 (1996).
[CrossRef]

IEEE Photonics Technol. Lett.

L. J. Richardson, W. Forysiak, and N. J. Doran, “Trans-oceanic 160-Gbit/s single-channel transmission using short-period dispersion management,” IEEE Photonics Technol. Lett. 13, 209–211 (2001).
[CrossRef]

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, “Average dispersion decreasing densely dispersion-managed fiber transmission systems,” IEEE Photonics Technol. Lett. 14, 1279–1281 (2002).
[CrossRef]

Opt. Commun.

B. A. Malomed, “Suppression of soliton jitter and interactions by means of dispersion management,” Opt. Commun. 147, 157–162 (1998).
[CrossRef]

M. Zitelli, B. Malomed, F. Matera, and M. Settembre, “Strong time jitter reduction using solitons in ‘1/z’ dispersion managed fiber links,” Opt. Commun. 154, 273–276 (1998).
[CrossRef]

Opt. Lett.

Phys. Lett. A

K. Nakkeeran, A. B. Moubissi, and P. Tchofo Dinda, “Analytical design of dispersion-managed fiber system with map strength 1.65,” Phys. Lett. A 308, 417–425 (2003).
[CrossRef]

Phys. Rev. E

P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, “Collective variable theory for solitons in optical fibers,” Phys. Rev. E 64, 016608 (2001).
[CrossRef]

Other

V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Berlin, 1998).

A. Labruyère, P. Tchofo Dinda, K. Nakkeeran, and A. B. Moubissi, “Feasibility of N×160 Gbit/s ultra-long haul transmissions in densely dispersion-managed optical fiber systems,” submitted to Opt. Commun.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Slow dynamics showing (a1), (a2) a RC pulse propagating in a DM fiber system designed by use of an RC Ansatz; (b1), (b2) a RC pulse propagating in a DM fiber system designed by use of a Gaussian Ansatz; (c1), (c2) a Gaussian pulse propagating in a DM fiber system designed by use of a Gaussian Ansatz.

Fig. 2
Fig. 2

Evolution of pulse width and chirp in one dispersion map designed by use of (a1), (b1) a RC Ansatz and (a2), (b2) a Gaussian Ansatz. Solid, dashed, and dotted curves show the solutions of RC Ansatz dynamic equations (3) with (5), Gaussian Ansatz equations (3) with (4) and NLSE (1), respectively.

Fig. 3
Fig. 3

(a) Q factor versus propagation distance z, showing the transmission performance of 128-bit pseudorandom binary sequence patterns of initially Gaussian pulses and initially RC pulses, in our analytically designed DDM fiber line. The Q factor is given in linear units, and the dotted line represents Q=6. (b1) Profiles of the input pulses used in the transmission. (b2) Profiles of the output pulses after single-pulse transmission. Solid and dashed curves in (b1) and (b2) correspond to initially Gaussian and RC profiles, respectively.

Fig. 4
Fig. 4

Collective-variable analysis by use of the Gaussian Ansatz for single-pulse propagation in the DDM fiber line.

Fig. 5
Fig. 5

Collective-variable analysis by use of the RC ansatz for single-pulse propagation in the DDM fiber line.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ψz+iβ(z)2ψtt-iγ(z)|ψ|2ψ=0,
fg=x1 exp-t2x22+ix3t22+ix4,
fRC=x121+cosπtx2expix3t22+ix4,
x˙2=-β(z)x2x3,
x˙3=β(z)x32-α1x24-α2γ(z)E0x23,
α1=4,α2=2
α1=60π416π4-600π2+454532.2,
α2=4375π248(16π4-600π2+4545)4.9
L±2=g(β±, γ±, c±, x2max)-α2γ±β±E02c±2c± ln(4c±x2±-2α2γ±β±E0),
g(β±, γ±, c±, x2)=R±(x2)2c±+α2γ±β±E02c±2c± ln[22c±R±(x2)+4c±x2-2α2γ±β±E0],
R±(x2)=2c±x22-2α2β±γ±E0x2-α1β±2,
c±=α1β±22x2±2+α2β±γ±E0x2±,
x2max=α2E0β+β-(γ+β--γ-β+)c+β-2-c-β+2.
Ln-=βa1 exp-i=1n-1Ti-β+Lβ--β+
βm=βa1T[1-exp(-T)],T=i=1N-1Ti.
L+=βm-β-β+-β-L,L-=L-L+.
ψ(z, t)=f(x1, x2, x3, x4, t)+q(z, t),

Metrics