Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811/1–5 (2003).

[CrossRef]

Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003).

[CrossRef]

C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, “Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy,” Opt. Lett. 28, 713–715 (2003).

[CrossRef]
[PubMed]

A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716–718 (2003).

[CrossRef]
[PubMed]

X. X. Yang and Y. Wu, “Coherent superposition states of atoms and molecules in a Bose–Einstein condensate with exactly balanced photoassociations and photodissociations,” Chin. Phys. Lett. 20, 189–191 (2003).

[CrossRef]

Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett. 28, 1793–1795 (2003).

[CrossRef]
[PubMed]

Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in resonant coherent media,” Opt. Lett. 28, 631–633 (2003).

[CrossRef]
[PubMed]

Y. Wu and X. Yang, “Analytical results for energy spectrum and eigenstates of Bose–Einstein condensate in Mott insulator state,” Phys. Rev. A 68, 013608/1–7 (2003).

[CrossRef]

L. You, “Creating maximally entangled atomic states in a Bose–Einstein condensate,” Phys. Rev. Lett. 90, 030402/1–4 (2003).

[CrossRef]

M. Alexanian, “Cavity coherent-state cloning via Raman scattering,” Phys. Rev. A 67, 033809/1–6 (2003).

[CrossRef]

I. P. Vadeiko, G. P. Miroshnichenko, A. V. Rybin, and J. Timonen, “Algebraic approach to the Tavis–Cummings problem,” Phys. Rev. A 67, 053808/1–12 (2003).

[CrossRef]

O. E. Müstecaplioǧlu, M. Zhang, and L. You, “Spin squeezing and entanglement in spinor condensates,” Phys. Rev. A 66, 033611/1–9 (2002).

[CrossRef]

T. Papenbrock, “Universal solutions for interacting bosons in one-dimensional harmonic traps,” Phys. Rev. A 65, 063606/1–5 (2002).

[CrossRef]

S. Lettieri, S. D. Finizio, P. Maddalena, V. Ballarini, and F. Giogis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81, 4706–4708 (2002).

[CrossRef]

V. A. Andreev and O. A. Ivanova, “Symmetries and reduced systems of equations for three-boson and four-boson interactions,” J. Phys. A 35, 8587–8602 (2002).

[CrossRef]

J. M. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose–Einstein condensates,” Phys. Rev. Lett. 89, 020401/1–4 (2002).

[CrossRef]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902/1–4 (2002).

[CrossRef]
[PubMed]

P. Villain, P. Ohberg, L. Santos, A. Sanpera, and M. Lewenstein, “Four-wave mixing in degenerate atomic gases,” Phys. Rev. A 64, 023606/1–5 (2001).

[CrossRef]

J. Heurich, H. Pu, M. G. Moore, and P. Meystre, “Instabilities and self-oscillations in atomic four-wave mixing,” Phys. Rev. A 63, 033605/1–7 (2001).

[CrossRef]

M. G. Moore and P. Meystre, “Atomic four-wave mixing: fermions versus bosons,” Phys. Rev. Lett. 86, 4199–4202 (2001).

[CrossRef]
[PubMed]

W. Ketterle and S. Inouye, “Does matter wave amplification work for fermions?,” Phys. Rev. Lett. 86, 4203–4206 (2001).

[CrossRef]
[PubMed]

Y. Wu and X. Yang, “Quantum theory for micro-cavity enhancement of second-harmonic generation,” J. Phys. B 34, 2281–2288 (2001).

[CrossRef]

G. Alvarez and R. F. Alvarez-Estrada, “Third harmonic generation as a third-order quasi-exactly solvable system,” J. Phys. A 34, 10045–10056 (2001).

[CrossRef]

M. K. Olsen, V. I. Kruglov, and M. J. Collett, “Effects of χ^{(3)} nonlinearities in second-harmonic generation,” Phys. Rev. A 63, 033801/1–7 (2001).

[CrossRef]

A. B. Klimov, L. L. Sánchez-Soto, and J. Delgado, “Mimicking a Kerrlike medium in the dispersive regime of second-harmonic generation,” Opt. Commun. 191, 419–426 (2001).

[CrossRef]

Y. Wu, X. Yang, and Y. Xiao, “Analytical method for yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200–2203 (2001).

[CrossRef]
[PubMed]

M. Alexanian and S. K. Bose, “Generation of photonic superposition states by two-photon absorption,” J. Lumin. 94, 815–819 (2001).

[CrossRef]

R. Franzosi and V. Penna, “Spectral properties of coupled Bose–Einstein condensates,” Phys. Rev. A 63, 043609/1–8 (2001).

[CrossRef]

Y. Wu and X. Yang, “Algebraic method for solving a class of coupled-channel cavity QED models,” Phys. Rev. A 63, 043816/1–5 (2001).

[CrossRef]

Y. Wu, X. Yang, and C. Sun, “Systematical method to study general structure of Bose–Einstein condensates with arbitrary spin,” Phys. Rev. A 62, 063603/1–4 (2000).

[CrossRef]

M. Koashi and M. Ueda, “Exact eigenstates and magnetic response of spin-1 and spin-2 Bose–Einstein condensates,” Phys. Rev. Lett. 84, 1066–1069 (2000).

[CrossRef]
[PubMed]

S. Raghavan, H. Pu, C. K. Law, J. H. Eberly, and N. P. Bigelow, “Properties of spinor Bose condensates,” J. Low Temp. Phys. 119, 437–460 (2000).

[CrossRef]

M. Alexanian and S. K. Bose, “Comment on ‘Generation of phase states by two-photon absorption’,” Phys. Rev. Lett. 85, 1136 (2000).

[CrossRef]

H. Pu and P. Meystre, “Creating macroscopic atomic Einstein–Podolsky–Rosen states from Bose–Einstein condensates,” Phys. Rev. Lett. 85, 3987–3990 (2000).

[CrossRef]
[PubMed]

L.-M. Duan, A. Sorensen, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett. 85, 3991–3994 (2000).

[CrossRef]
[PubMed]

Y. Wu, X. Yang, C. P. Sun, X. J. Zhou, and Y. Q. Wang, “Theory of four-wave mixing with matter waves without the undepleted pump approximation,” Phys. Rev. A 61, 043604/1–6 (2000).

[CrossRef]

Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett. 24, 345–347 (1999).

[CrossRef]

E. V. Goldstein and P. Meystre, “Phase conjugation of multicomponent Bose–Einstein condensates,” Phys. Rev. A 59, 1509–1513 (1999).

[CrossRef]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, “Spin-mixing dynamics of a spinor Bose–Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999).

[CrossRef]

C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins in spinor Bose–Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998).

[CrossRef]

M. D. Girardeau, “Comment on ‘Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross–Pitaevskii equation for a highly condensed Bose gas’,” Phys. Rev. A 58, 775–778 (1998).

[CrossRef]

Y. Castin and R. Dum, “Low-temperature Bose–Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach,” Phys. Rev. A 57, 3008–3021 (1998).

[CrossRef]

M. Trippenbach, Y. B. Band, and P. S. Julienne, “Four-wave mixing in the scattering of Bose–Einstein condensates,” Opt. Express 3, 530–537 (1998).

[CrossRef]
[PubMed]

M. Alexanian, S. K. Bose, and L. Chow, “Trapping and photon number states in a two-photon micromaser,” J. Lumin. 76–77, 677–680 (1998).

[CrossRef]

Y. Wu and X. Yang, “Effective two-level model for a three-level atom in the Ξ configuration,” Phys. Rev. A 56, 2443–2446 (1997).

[CrossRef]

C. W. Gardiner, “Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross–Pitaevskii equation for a highly condensed Bose gas,” Phys. Rev. A 56, 1414–1423 (1997).

[CrossRef]

X. Yang, Y. Wu, and Y. Li, “A unified and standardized procedure to solve various nonlinear Jaynes–Cummings models,” Phys. Rev. A 55, 4545–4551 (1997).

[CrossRef]

Y. Wu, “Simple algebraic method to solve a coupled-channel cavity QED model,” Phys. Rev. A 54, 4534–4543 (1996).

[CrossRef]
[PubMed]

Y. Wu, “Effective Raman theory for a three-level atom in the Λ configuration,” Phys. Rev. A 54, 1586–1592 (1996).

[CrossRef]
[PubMed]

M. Alexanian and S. K. Bose, “Unitary transformation and the dynamics of a three-level atom interacting with two quantized field modes,” Phys. Rev. A 52, 2218–2224 (1995).

[CrossRef]
[PubMed]

V. P. Karassiov, “G-invariant polynomial extensions of Lie algebras in quantum many-body physics,” J. Phys. A 27, 153–165 (1994).

[CrossRef]

Liwei Wang, R. R. Puri, and J. H. Eberly, “Coupled-channel cavity QED model and exact solutions,” Phys. Rev. A 46, 7192–7209 (1992).

[CrossRef]
[PubMed]

M. Alexanian, “Cavity coherent-state cloning via Raman scattering,” Phys. Rev. A 67, 033809/1–6 (2003).

[CrossRef]

M. Alexanian and S. K. Bose, “Generation of photonic superposition states by two-photon absorption,” J. Lumin. 94, 815–819 (2001).

[CrossRef]

M. Alexanian and S. K. Bose, “Comment on ‘Generation of phase states by two-photon absorption’,” Phys. Rev. Lett. 85, 1136 (2000).

[CrossRef]

M. Alexanian, S. K. Bose, and L. Chow, “Trapping and photon number states in a two-photon micromaser,” J. Lumin. 76–77, 677–680 (1998).

[CrossRef]

M. Alexanian and S. K. Bose, “Unitary transformation and the dynamics of a three-level atom interacting with two quantized field modes,” Phys. Rev. A 52, 2218–2224 (1995).

[CrossRef]
[PubMed]

G. Alvarez and R. F. Alvarez-Estrada, “Third harmonic generation as a third-order quasi-exactly solvable system,” J. Phys. A 34, 10045–10056 (2001).

[CrossRef]

G. Alvarez and R. F. Alvarez-Estrada, “Third harmonic generation as a third-order quasi-exactly solvable system,” J. Phys. A 34, 10045–10056 (2001).

[CrossRef]

V. A. Andreev and O. A. Ivanova, “Symmetries and reduced systems of equations for three-boson and four-boson interactions,” J. Phys. A 35, 8587–8602 (2002).

[CrossRef]

S. Lettieri, S. D. Finizio, P. Maddalena, V. Ballarini, and F. Giogis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81, 4706–4708 (2002).

[CrossRef]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

S. Raghavan, H. Pu, C. K. Law, J. H. Eberly, and N. P. Bigelow, “Properties of spinor Bose condensates,” J. Low Temp. Phys. 119, 437–460 (2000).

[CrossRef]

H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, “Spin-mixing dynamics of a spinor Bose–Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999).

[CrossRef]

C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins in spinor Bose–Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998).

[CrossRef]

Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003).

[CrossRef]

M. Alexanian and S. K. Bose, “Generation of photonic superposition states by two-photon absorption,” J. Lumin. 94, 815–819 (2001).

[CrossRef]

M. Alexanian and S. K. Bose, “Comment on ‘Generation of phase states by two-photon absorption’,” Phys. Rev. Lett. 85, 1136 (2000).

[CrossRef]

M. Alexanian, S. K. Bose, and L. Chow, “Trapping and photon number states in a two-photon micromaser,” J. Lumin. 76–77, 677–680 (1998).

[CrossRef]

M. Alexanian and S. K. Bose, “Unitary transformation and the dynamics of a three-level atom interacting with two quantized field modes,” Phys. Rev. A 52, 2218–2224 (1995).

[CrossRef]
[PubMed]

Y. Castin and R. Dum, “Low-temperature Bose–Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach,” Phys. Rev. A 57, 3008–3021 (1998).

[CrossRef]

M. Alexanian, S. K. Bose, and L. Chow, “Trapping and photon number states in a two-photon micromaser,” J. Lumin. 76–77, 677–680 (1998).

[CrossRef]

L.-M. Duan, A. Sorensen, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett. 85, 3991–3994 (2000).

[CrossRef]
[PubMed]

M. K. Olsen, V. I. Kruglov, and M. J. Collett, “Effects of χ^{(3)} nonlinearities in second-harmonic generation,” Phys. Rev. A 63, 033801/1–7 (2001).

[CrossRef]

A. B. Klimov, L. L. Sánchez-Soto, and J. Delgado, “Mimicking a Kerrlike medium in the dispersive regime of second-harmonic generation,” Opt. Commun. 191, 419–426 (2001).

[CrossRef]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902/1–4 (2002).

[CrossRef]
[PubMed]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

L.-M. Duan, A. Sorensen, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett. 85, 3991–3994 (2000).

[CrossRef]
[PubMed]

Y. Castin and R. Dum, “Low-temperature Bose–Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach,” Phys. Rev. A 57, 3008–3021 (1998).

[CrossRef]

S. Raghavan, H. Pu, C. K. Law, J. H. Eberly, and N. P. Bigelow, “Properties of spinor Bose condensates,” J. Low Temp. Phys. 119, 437–460 (2000).

[CrossRef]

H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, “Spin-mixing dynamics of a spinor Bose–Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999).

[CrossRef]

Liwei Wang, R. R. Puri, and J. H. Eberly, “Coupled-channel cavity QED model and exact solutions,” Phys. Rev. A 46, 7192–7209 (1992).

[CrossRef]
[PubMed]

S. Lettieri, S. D. Finizio, P. Maddalena, V. Ballarini, and F. Giogis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81, 4706–4708 (2002).

[CrossRef]

R. Franzosi and V. Penna, “Spectral properties of coupled Bose–Einstein condensates,” Phys. Rev. A 63, 043609/1–8 (2001).

[CrossRef]

C. W. Gardiner, “Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross–Pitaevskii equation for a highly condensed Bose gas,” Phys. Rev. A 56, 1414–1423 (1997).

[CrossRef]

S. Lettieri, S. D. Finizio, P. Maddalena, V. Ballarini, and F. Giogis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81, 4706–4708 (2002).

[CrossRef]

M. D. Girardeau, “Comment on ‘Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross–Pitaevskii equation for a highly condensed Bose gas’,” Phys. Rev. A 58, 775–778 (1998).

[CrossRef]

E. V. Goldstein and P. Meystre, “Phase conjugation of multicomponent Bose–Einstein condensates,” Phys. Rev. A 59, 1509–1513 (1999).

[CrossRef]

Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003).

[CrossRef]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902/1–4 (2002).

[CrossRef]
[PubMed]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

J. Heurich, H. Pu, M. G. Moore, and P. Meystre, “Instabilities and self-oscillations in atomic four-wave mixing,” Phys. Rev. A 63, 033605/1–7 (2001).

[CrossRef]

W. Ketterle and S. Inouye, “Does matter wave amplification work for fermions?,” Phys. Rev. Lett. 86, 4203–4206 (2001).

[CrossRef]
[PubMed]

V. A. Andreev and O. A. Ivanova, “Symmetries and reduced systems of equations for three-boson and four-boson interactions,” J. Phys. A 35, 8587–8602 (2002).

[CrossRef]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

M. Trippenbach, Y. B. Band, and P. S. Julienne, “Four-wave mixing in the scattering of Bose–Einstein condensates,” Opt. Express 3, 530–537 (1998).

[CrossRef]
[PubMed]

Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003).

[CrossRef]

V. P. Karassiov, “G-invariant polynomial extensions of Lie algebras in quantum many-body physics,” J. Phys. A 27, 153–165 (1994).

[CrossRef]

J. M. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose–Einstein condensates,” Phys. Rev. Lett. 89, 020401/1–4 (2002).

[CrossRef]

W. Ketterle and S. Inouye, “Does matter wave amplification work for fermions?,” Phys. Rev. Lett. 86, 4203–4206 (2001).

[CrossRef]
[PubMed]

Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003).

[CrossRef]

A. B. Klimov, L. L. Sánchez-Soto, and J. Delgado, “Mimicking a Kerrlike medium in the dispersive regime of second-harmonic generation,” Opt. Commun. 191, 419–426 (2001).

[CrossRef]

M. Koashi and M. Ueda, “Exact eigenstates and magnetic response of spin-1 and spin-2 Bose–Einstein condensates,” Phys. Rev. Lett. 84, 1066–1069 (2000).

[CrossRef]
[PubMed]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902/1–4 (2002).

[CrossRef]
[PubMed]

M. K. Olsen, V. I. Kruglov, and M. J. Collett, “Effects of χ^{(3)} nonlinearities in second-harmonic generation,” Phys. Rev. A 63, 033801/1–7 (2001).

[CrossRef]

S. Raghavan, H. Pu, C. K. Law, J. H. Eberly, and N. P. Bigelow, “Properties of spinor Bose condensates,” J. Low Temp. Phys. 119, 437–460 (2000).

[CrossRef]

H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, “Spin-mixing dynamics of a spinor Bose–Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999).

[CrossRef]

C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins in spinor Bose–Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998).

[CrossRef]

S. Lettieri, S. D. Finizio, P. Maddalena, V. Ballarini, and F. Giogis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81, 4706–4708 (2002).

[CrossRef]

P. Villain, P. Ohberg, L. Santos, A. Sanpera, and M. Lewenstein, “Four-wave mixing in degenerate atomic gases,” Phys. Rev. A 64, 023606/1–5 (2001).

[CrossRef]

X. Yang, Y. Wu, and Y. Li, “A unified and standardized procedure to solve various nonlinear Jaynes–Cummings models,” Phys. Rev. A 55, 4545–4551 (1997).

[CrossRef]

S. Lettieri, S. D. Finizio, P. Maddalena, V. Ballarini, and F. Giogis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81, 4706–4708 (2002).

[CrossRef]

J. Heurich, H. Pu, M. G. Moore, and P. Meystre, “Instabilities and self-oscillations in atomic four-wave mixing,” Phys. Rev. A 63, 033605/1–7 (2001).

[CrossRef]

M. G. Moore and P. Meystre, “Atomic four-wave mixing: fermions versus bosons,” Phys. Rev. Lett. 86, 4199–4202 (2001).

[CrossRef]
[PubMed]

H. Pu and P. Meystre, “Creating macroscopic atomic Einstein–Podolsky–Rosen states from Bose–Einstein condensates,” Phys. Rev. Lett. 85, 3987–3990 (2000).

[CrossRef]
[PubMed]

E. V. Goldstein and P. Meystre, “Phase conjugation of multicomponent Bose–Einstein condensates,” Phys. Rev. A 59, 1509–1513 (1999).

[CrossRef]

I. P. Vadeiko, G. P. Miroshnichenko, A. V. Rybin, and J. Timonen, “Algebraic approach to the Tavis–Cummings problem,” Phys. Rev. A 67, 053808/1–12 (2003).

[CrossRef]

J. Heurich, H. Pu, M. G. Moore, and P. Meystre, “Instabilities and self-oscillations in atomic four-wave mixing,” Phys. Rev. A 63, 033605/1–7 (2001).

[CrossRef]

M. G. Moore and P. Meystre, “Atomic four-wave mixing: fermions versus bosons,” Phys. Rev. Lett. 86, 4199–4202 (2001).

[CrossRef]
[PubMed]

O. E. Müstecaplioǧlu, M. Zhang, and L. You, “Spin squeezing and entanglement in spinor condensates,” Phys. Rev. A 66, 033611/1–9 (2002).

[CrossRef]

Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003).

[CrossRef]

P. Villain, P. Ohberg, L. Santos, A. Sanpera, and M. Lewenstein, “Four-wave mixing in degenerate atomic gases,” Phys. Rev. A 64, 023606/1–5 (2001).

[CrossRef]

M. K. Olsen, V. I. Kruglov, and M. J. Collett, “Effects of χ^{(3)} nonlinearities in second-harmonic generation,” Phys. Rev. A 63, 033801/1–7 (2001).

[CrossRef]

T. Papenbrock, “Universal solutions for interacting bosons in one-dimensional harmonic traps,” Phys. Rev. A 65, 063606/1–5 (2002).

[CrossRef]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902/1–4 (2002).

[CrossRef]
[PubMed]

R. Franzosi and V. Penna, “Spectral properties of coupled Bose–Einstein condensates,” Phys. Rev. A 63, 043609/1–8 (2001).

[CrossRef]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

J. Heurich, H. Pu, M. G. Moore, and P. Meystre, “Instabilities and self-oscillations in atomic four-wave mixing,” Phys. Rev. A 63, 033605/1–7 (2001).

[CrossRef]

S. Raghavan, H. Pu, C. K. Law, J. H. Eberly, and N. P. Bigelow, “Properties of spinor Bose condensates,” J. Low Temp. Phys. 119, 437–460 (2000).

[CrossRef]

H. Pu and P. Meystre, “Creating macroscopic atomic Einstein–Podolsky–Rosen states from Bose–Einstein condensates,” Phys. Rev. Lett. 85, 3987–3990 (2000).

[CrossRef]
[PubMed]

H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, “Spin-mixing dynamics of a spinor Bose–Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999).

[CrossRef]

C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins in spinor Bose–Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998).

[CrossRef]

Liwei Wang, R. R. Puri, and J. H. Eberly, “Coupled-channel cavity QED model and exact solutions,” Phys. Rev. A 46, 7192–7209 (1992).

[CrossRef]
[PubMed]

S. Raghavan, H. Pu, C. K. Law, J. H. Eberly, and N. P. Bigelow, “Properties of spinor Bose condensates,” J. Low Temp. Phys. 119, 437–460 (2000).

[CrossRef]

H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, “Spin-mixing dynamics of a spinor Bose–Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999).

[CrossRef]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

I. P. Vadeiko, G. P. Miroshnichenko, A. V. Rybin, and J. Timonen, “Algebraic approach to the Tavis–Cummings problem,” Phys. Rev. A 67, 053808/1–12 (2003).

[CrossRef]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811/1–5 (2003).

[CrossRef]

A. B. Klimov, L. L. Sánchez-Soto, and J. Delgado, “Mimicking a Kerrlike medium in the dispersive regime of second-harmonic generation,” Opt. Commun. 191, 419–426 (2001).

[CrossRef]

P. Villain, P. Ohberg, L. Santos, A. Sanpera, and M. Lewenstein, “Four-wave mixing in degenerate atomic gases,” Phys. Rev. A 64, 023606/1–5 (2001).

[CrossRef]

P. Villain, P. Ohberg, L. Santos, A. Sanpera, and M. Lewenstein, “Four-wave mixing in degenerate atomic gases,” Phys. Rev. A 64, 023606/1–5 (2001).

[CrossRef]

Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003).

[CrossRef]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

L.-M. Duan, A. Sorensen, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett. 85, 3991–3994 (2000).

[CrossRef]
[PubMed]

Y. Wu, X. Yang, and C. Sun, “Systematical method to study general structure of Bose–Einstein condensates with arbitrary spin,” Phys. Rev. A 62, 063603/1–4 (2000).

[CrossRef]

Y. Wu, X. Yang, C. P. Sun, X. J. Zhou, and Y. Q. Wang, “Theory of four-wave mixing with matter waves without the undepleted pump approximation,” Phys. Rev. A 61, 043604/1–6 (2000).

[CrossRef]

Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003).

[CrossRef]

I. P. Vadeiko, G. P. Miroshnichenko, A. V. Rybin, and J. Timonen, “Algebraic approach to the Tavis–Cummings problem,” Phys. Rev. A 67, 053808/1–12 (2003).

[CrossRef]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

M. Trippenbach, Y. B. Band, and P. S. Julienne, “Four-wave mixing in the scattering of Bose–Einstein condensates,” Opt. Express 3, 530–537 (1998).

[CrossRef]
[PubMed]

M. Koashi and M. Ueda, “Exact eigenstates and magnetic response of spin-1 and spin-2 Bose–Einstein condensates,” Phys. Rev. Lett. 84, 1066–1069 (2000).

[CrossRef]
[PubMed]

I. P. Vadeiko, G. P. Miroshnichenko, A. V. Rybin, and J. Timonen, “Algebraic approach to the Tavis–Cummings problem,” Phys. Rev. A 67, 053808/1–12 (2003).

[CrossRef]

P. Villain, P. Ohberg, L. Santos, A. Sanpera, and M. Lewenstein, “Four-wave mixing in degenerate atomic gases,” Phys. Rev. A 64, 023606/1–5 (2001).

[CrossRef]

J. M. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose–Einstein condensates,” Phys. Rev. Lett. 89, 020401/1–4 (2002).

[CrossRef]

Liwei Wang, R. R. Puri, and J. H. Eberly, “Coupled-channel cavity QED model and exact solutions,” Phys. Rev. A 46, 7192–7209 (1992).

[CrossRef]
[PubMed]

Y. Wu, X. Yang, C. P. Sun, X. J. Zhou, and Y. Q. Wang, “Theory of four-wave mixing with matter waves without the undepleted pump approximation,” Phys. Rev. A 61, 043604/1–6 (2000).

[CrossRef]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in resonant coherent media,” Opt. Lett. 28, 631–633 (2003).

[CrossRef]
[PubMed]

X. X. Yang and Y. Wu, “Coherent superposition states of atoms and molecules in a Bose–Einstein condensate with exactly balanced photoassociations and photodissociations,” Chin. Phys. Lett. 20, 189–191 (2003).

[CrossRef]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811/1–5 (2003).

[CrossRef]

Y. Wu and X. Yang, “Analytical results for energy spectrum and eigenstates of Bose–Einstein condensate in Mott insulator state,” Phys. Rev. A 68, 013608/1–7 (2003).

[CrossRef]

Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett. 28, 1793–1795 (2003).

[CrossRef]
[PubMed]

Y. Wu, X. Yang, and Y. Xiao, “Analytical method for yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200–2203 (2001).

[CrossRef]
[PubMed]

Y. Wu and X. Yang, “Algebraic method for solving a class of coupled-channel cavity QED models,” Phys. Rev. A 63, 043816/1–5 (2001).

[CrossRef]

Y. Wu and X. Yang, “Quantum theory for micro-cavity enhancement of second-harmonic generation,” J. Phys. B 34, 2281–2288 (2001).

[CrossRef]

Y. Wu, X. Yang, and C. Sun, “Systematical method to study general structure of Bose–Einstein condensates with arbitrary spin,” Phys. Rev. A 62, 063603/1–4 (2000).

[CrossRef]

Y. Wu, X. Yang, C. P. Sun, X. J. Zhou, and Y. Q. Wang, “Theory of four-wave mixing with matter waves without the undepleted pump approximation,” Phys. Rev. A 61, 043604/1–6 (2000).

[CrossRef]

Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett. 24, 345–347 (1999).

[CrossRef]

X. Yang, Y. Wu, and Y. Li, “A unified and standardized procedure to solve various nonlinear Jaynes–Cummings models,” Phys. Rev. A 55, 4545–4551 (1997).

[CrossRef]

Y. Wu and X. Yang, “Effective two-level model for a three-level atom in the Ξ configuration,” Phys. Rev. A 56, 2443–2446 (1997).

[CrossRef]

Y. Wu, “Effective Raman theory for a three-level atom in the Λ configuration,” Phys. Rev. A 54, 1586–1592 (1996).

[CrossRef]
[PubMed]

Y. Wu, “Simple algebraic method to solve a coupled-channel cavity QED model,” Phys. Rev. A 54, 4534–4543 (1996).

[CrossRef]
[PubMed]

Y. Wu, X. Yang, and Y. Xiao, “Analytical method for yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200–2203 (2001).

[CrossRef]
[PubMed]

J. M. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose–Einstein condensates,” Phys. Rev. Lett. 89, 020401/1–4 (2002).

[CrossRef]

Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003).

[CrossRef]

Y. Wu and X. Yang, “Analytical results for energy spectrum and eigenstates of Bose–Einstein condensate in Mott insulator state,” Phys. Rev. A 68, 013608/1–7 (2003).

[CrossRef]

Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett. 28, 1793–1795 (2003).

[CrossRef]
[PubMed]

Y. Wu, X. Yang, and Y. Xiao, “Analytical method for yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200–2203 (2001).

[CrossRef]
[PubMed]

Y. Wu and X. Yang, “Algebraic method for solving a class of coupled-channel cavity QED models,” Phys. Rev. A 63, 043816/1–5 (2001).

[CrossRef]

Y. Wu and X. Yang, “Quantum theory for micro-cavity enhancement of second-harmonic generation,” J. Phys. B 34, 2281–2288 (2001).

[CrossRef]

Y. Wu, X. Yang, and C. Sun, “Systematical method to study general structure of Bose–Einstein condensates with arbitrary spin,” Phys. Rev. A 62, 063603/1–4 (2000).

[CrossRef]

Y. Wu, X. Yang, C. P. Sun, X. J. Zhou, and Y. Q. Wang, “Theory of four-wave mixing with matter waves without the undepleted pump approximation,” Phys. Rev. A 61, 043604/1–6 (2000).

[CrossRef]

Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett. 24, 345–347 (1999).

[CrossRef]

Y. Wu and X. Yang, “Effective two-level model for a three-level atom in the Ξ configuration,” Phys. Rev. A 56, 2443–2446 (1997).

[CrossRef]

X. Yang, Y. Wu, and Y. Li, “A unified and standardized procedure to solve various nonlinear Jaynes–Cummings models,” Phys. Rev. A 55, 4545–4551 (1997).

[CrossRef]

X. X. Yang and Y. Wu, “Coherent superposition states of atoms and molecules in a Bose–Einstein condensate with exactly balanced photoassociations and photodissociations,” Chin. Phys. Lett. 20, 189–191 (2003).

[CrossRef]

Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003).

[CrossRef]

L. You, “Creating maximally entangled atomic states in a Bose–Einstein condensate,” Phys. Rev. Lett. 90, 030402/1–4 (2003).

[CrossRef]

O. E. Müstecaplioǧlu, M. Zhang, and L. You, “Spin squeezing and entanglement in spinor condensates,” Phys. Rev. A 66, 033611/1–9 (2002).

[CrossRef]

O. E. Müstecaplioǧlu, M. Zhang, and L. You, “Spin squeezing and entanglement in spinor condensates,” Phys. Rev. A 66, 033611/1–9 (2002).

[CrossRef]

Y. Wu, X. Yang, C. P. Sun, X. J. Zhou, and Y. Q. Wang, “Theory of four-wave mixing with matter waves without the undepleted pump approximation,” Phys. Rev. A 61, 043604/1–6 (2000).

[CrossRef]

Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in resonant coherent media,” Opt. Lett. 28, 631–633 (2003).

[CrossRef]
[PubMed]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811/1–5 (2003).

[CrossRef]

L.-M. Duan, A. Sorensen, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett. 85, 3991–3994 (2000).

[CrossRef]
[PubMed]

S. Lettieri, S. D. Finizio, P. Maddalena, V. Ballarini, and F. Giogis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81, 4706–4708 (2002).

[CrossRef]

X. X. Yang and Y. Wu, “Coherent superposition states of atoms and molecules in a Bose–Einstein condensate with exactly balanced photoassociations and photodissociations,” Chin. Phys. Lett. 20, 189–191 (2003).

[CrossRef]

S. Raghavan, H. Pu, C. K. Law, J. H. Eberly, and N. P. Bigelow, “Properties of spinor Bose condensates,” J. Low Temp. Phys. 119, 437–460 (2000).

[CrossRef]

M. Alexanian, S. K. Bose, and L. Chow, “Trapping and photon number states in a two-photon micromaser,” J. Lumin. 76–77, 677–680 (1998).

[CrossRef]

M. Alexanian and S. K. Bose, “Generation of photonic superposition states by two-photon absorption,” J. Lumin. 94, 815–819 (2001).

[CrossRef]

V. P. Karassiov, “G-invariant polynomial extensions of Lie algebras in quantum many-body physics,” J. Phys. A 27, 153–165 (1994).

[CrossRef]

V. A. Andreev and O. A. Ivanova, “Symmetries and reduced systems of equations for three-boson and four-boson interactions,” J. Phys. A 35, 8587–8602 (2002).

[CrossRef]

G. Alvarez and R. F. Alvarez-Estrada, “Third harmonic generation as a third-order quasi-exactly solvable system,” J. Phys. A 34, 10045–10056 (2001).

[CrossRef]

Y. Wu and X. Yang, “Quantum theory for micro-cavity enhancement of second-harmonic generation,” J. Phys. B 34, 2281–2288 (2001).

[CrossRef]

L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999).

[CrossRef]

A. B. Klimov, L. L. Sánchez-Soto, and J. Delgado, “Mimicking a Kerrlike medium in the dispersive regime of second-harmonic generation,” Opt. Commun. 191, 419–426 (2001).

[CrossRef]

C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, “Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy,” Opt. Lett. 28, 713–715 (2003).

[CrossRef]
[PubMed]

A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716–718 (2003).

[CrossRef]
[PubMed]

Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett. 28, 1793–1795 (2003).

[CrossRef]
[PubMed]

Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett. 24, 345–347 (1999).

[CrossRef]

Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in resonant coherent media,” Opt. Lett. 28, 631–633 (2003).

[CrossRef]
[PubMed]

Y. Wu and X. Yang, “Analytical results for energy spectrum and eigenstates of Bose–Einstein condensate in Mott insulator state,” Phys. Rev. A 68, 013608/1–7 (2003).

[CrossRef]

M. Alexanian and S. K. Bose, “Unitary transformation and the dynamics of a three-level atom interacting with two quantized field modes,” Phys. Rev. A 52, 2218–2224 (1995).

[CrossRef]
[PubMed]

Y. Wu, “Effective Raman theory for a three-level atom in the Λ configuration,” Phys. Rev. A 54, 1586–1592 (1996).

[CrossRef]
[PubMed]

Y. Wu and X. Yang, “Effective two-level model for a three-level atom in the Ξ configuration,” Phys. Rev. A 56, 2443–2446 (1997).

[CrossRef]

E. V. Goldstein and P. Meystre, “Phase conjugation of multicomponent Bose–Einstein condensates,” Phys. Rev. A 59, 1509–1513 (1999).

[CrossRef]

Y. Wu, X. Yang, C. P. Sun, X. J. Zhou, and Y. Q. Wang, “Theory of four-wave mixing with matter waves without the undepleted pump approximation,” Phys. Rev. A 61, 043604/1–6 (2000).

[CrossRef]

P. Villain, P. Ohberg, L. Santos, A. Sanpera, and M. Lewenstein, “Four-wave mixing in degenerate atomic gases,” Phys. Rev. A 64, 023606/1–5 (2001).

[CrossRef]

J. Heurich, H. Pu, M. G. Moore, and P. Meystre, “Instabilities and self-oscillations in atomic four-wave mixing,” Phys. Rev. A 63, 033605/1–7 (2001).

[CrossRef]

Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003).

[CrossRef]

M. K. Olsen, V. I. Kruglov, and M. J. Collett, “Effects of χ^{(3)} nonlinearities in second-harmonic generation,” Phys. Rev. A 63, 033801/1–7 (2001).

[CrossRef]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811/1–5 (2003).

[CrossRef]

O. E. Müstecaplioǧlu, M. Zhang, and L. You, “Spin squeezing and entanglement in spinor condensates,” Phys. Rev. A 66, 033611/1–9 (2002).

[CrossRef]

Y. Wu, X. Yang, and C. Sun, “Systematical method to study general structure of Bose–Einstein condensates with arbitrary spin,” Phys. Rev. A 62, 063603/1–4 (2000).

[CrossRef]

Y. Wu and X. Yang, “Algebraic method for solving a class of coupled-channel cavity QED models,” Phys. Rev. A 63, 043816/1–5 (2001).

[CrossRef]

T. Papenbrock, “Universal solutions for interacting bosons in one-dimensional harmonic traps,” Phys. Rev. A 65, 063606/1–5 (2002).

[CrossRef]

R. Franzosi and V. Penna, “Spectral properties of coupled Bose–Einstein condensates,” Phys. Rev. A 63, 043609/1–8 (2001).

[CrossRef]

H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, “Spin-mixing dynamics of a spinor Bose–Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999).

[CrossRef]

M. Alexanian, “Cavity coherent-state cloning via Raman scattering,” Phys. Rev. A 67, 033809/1–6 (2003).

[CrossRef]

C. W. Gardiner, “Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross–Pitaevskii equation for a highly condensed Bose gas,” Phys. Rev. A 56, 1414–1423 (1997).

[CrossRef]

M. D. Girardeau, “Comment on ‘Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross–Pitaevskii equation for a highly condensed Bose gas’,” Phys. Rev. A 58, 775–778 (1998).

[CrossRef]

Y. Castin and R. Dum, “Low-temperature Bose–Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach,” Phys. Rev. A 57, 3008–3021 (1998).

[CrossRef]

Liwei Wang, R. R. Puri, and J. H. Eberly, “Coupled-channel cavity QED model and exact solutions,” Phys. Rev. A 46, 7192–7209 (1992).

[CrossRef]
[PubMed]

Y. Wu, “Simple algebraic method to solve a coupled-channel cavity QED model,” Phys. Rev. A 54, 4534–4543 (1996).

[CrossRef]
[PubMed]

X. Yang, Y. Wu, and Y. Li, “A unified and standardized procedure to solve various nonlinear Jaynes–Cummings models,” Phys. Rev. A 55, 4545–4551 (1997).

[CrossRef]

I. P. Vadeiko, G. P. Miroshnichenko, A. V. Rybin, and J. Timonen, “Algebraic approach to the Tavis–Cummings problem,” Phys. Rev. A 67, 053808/1–12 (2003).

[CrossRef]

C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins in spinor Bose–Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998).

[CrossRef]

M. Koashi and M. Ueda, “Exact eigenstates and magnetic response of spin-1 and spin-2 Bose–Einstein condensates,” Phys. Rev. Lett. 84, 1066–1069 (2000).

[CrossRef]
[PubMed]

L. You, “Creating maximally entangled atomic states in a Bose–Einstein condensate,” Phys. Rev. Lett. 90, 030402/1–4 (2003).

[CrossRef]

H. Pu and P. Meystre, “Creating macroscopic atomic Einstein–Podolsky–Rosen states from Bose–Einstein condensates,” Phys. Rev. Lett. 85, 3987–3990 (2000).

[CrossRef]
[PubMed]

L.-M. Duan, A. Sorensen, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett. 85, 3991–3994 (2000).

[CrossRef]
[PubMed]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902/1–4 (2002).

[CrossRef]
[PubMed]

M. G. Moore and P. Meystre, “Atomic four-wave mixing: fermions versus bosons,” Phys. Rev. Lett. 86, 4199–4202 (2001).

[CrossRef]
[PubMed]

W. Ketterle and S. Inouye, “Does matter wave amplification work for fermions?,” Phys. Rev. Lett. 86, 4203–4206 (2001).

[CrossRef]
[PubMed]

J. M. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose–Einstein condensates,” Phys. Rev. Lett. 89, 020401/1–4 (2002).

[CrossRef]

M. Alexanian and S. K. Bose, “Comment on ‘Generation of phase states by two-photon absorption’,” Phys. Rev. Lett. 85, 1136 (2000).

[CrossRef]

Y. Wu, X. Yang, and Y. Xiao, “Analytical method for yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200–2203 (2001).

[CrossRef]
[PubMed]

M. Nielsen and I. Chuang, Quantum Computation and Quantum Communication (Cambridge University, Cambridge, UK, 2000).

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1985).

M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, UK, 1997).

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).