Abstract

We deal with the analysis of fluorescence decay of metastable manifolds of rare-earth ions in the presence of upconversion processes, with attention focused on Nd3+-doped crystals. In the literature this phenomenon is usually studied by means of rate equations or microscopic treatment. Here we show that only the second approach is correct in our experimental conditions, i.e., when the population dynamics is fast in comparison with the typical migration time τ0, and τ0 is considerably longer than the radiative lifetime. We studied the population dynamics after pulsed-laser excitation of some Nd3+-doped crystals, namely, BaY2F8:Nd3+ at 3.75%, LiYF4:Nd3+ at 1.05%, and KLa(MoO4)2:Nd3+ at 5.3%. We observed that the rate-equation formalism cannot reproduce the experimental data, therefore we used a microscopic treatment that gave much better results. From this analysis, after reaching the saturation regime, we were able to determine the donor–acceptor transfer constant Cda for the samples under investigation in an unconventional way.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Guy, C. L. Bonner, D. P. Shepard, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
    [CrossRef]
  2. M. Pollnau, P. J. Hardmann, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
    [CrossRef]
  3. Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
    [CrossRef]
  4. M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
    [CrossRef]
  5. M. P. Hehlen, G. Frei, and H. U. Gudel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1% Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
    [CrossRef]
  6. P. J. Hardmann, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
    [CrossRef]
  7. D. L. Russell and K. Holliday, “Upconversion and energy transfer dynamics in Nd3+:KLiYF5,” Opt. Commun. 191, 277–294 (2001).
    [CrossRef]
  8. A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, “Luminescence self-quenching from 4F3/2, 2P3/2, and 4D3/2 neodymium levels in double sodium–yttrium fluoride crystals,” J. Lumin. 94–95, 343–347 (2001).
    [CrossRef]
  9. M. V. Artamonova, Ch. M. Briskina, A. I. Burshtein, L. D. Zusman, and A. G. Skleznev, “Time variation of Nd3+ ion luminescence and an estimation of electron excitation migration along the ions in glass,” Sov. Phys. JETP 35, 457–461 (1972).
  10. Th. Forster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
    [CrossRef]
  11. D. L. Dexter, “Theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  12. S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).
  13. V. Lupei, A. Lupei, S. Georgescu, and W. M. Yen, “Effects of energy transfer on quantum efficiency of Nd:YAG,” J. Appl. Phys. 66, 3792–3797 (1989).
    [CrossRef]
  14. V. Lupei, A. Lupei, and S. Georgescu, “High-resolution spectroscopy of Nd3+ in YAlO3,” J. Phys.: Condens. Matter 4, L221–L224 (1992).
  15. V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. M. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
    [CrossRef]
  16. L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
    [CrossRef]
  17. V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
    [CrossRef]
  18. V. Lupei, “Self-quenching of Nd3+ emission in laser garnet crystals,” Opt. Mater. 16, 137–152 (2001).
    [CrossRef]
  19. V. Lupei, A. Lupei, N. Pavel, T. Taira, and A. Ikesue, “Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals,” Appl. Phys. B 73, 757–762 (2001).
    [CrossRef]
  20. V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64, 092102 (2001).
    [CrossRef]
  21. V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
    [CrossRef]
  22. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
    [CrossRef]
  23. L. D. Merkle and R. C. Powell, “Energy transfer among Nd3+ ions in garnet crystals,” Phys. Rev. B 20, 75–84 (1979).
    [CrossRef]
  24. D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55, 8881–8886 (1997).
    [CrossRef]
  25. L. D. Zusman, “Kinetics of luminescence damping in the hopping mechanism of quenching,” Sov. Phys. JETP 46, 347–354 (1977).
  26. I. Iparraguirre, R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, “Infrared-to-visible upconversion in K5Nd(MoO4)4 stoichiometric laser crystal,” J. Opt. Soc. Am. B 19, 2911–2920 (2002).
    [CrossRef]
  27. D. J. Coleman, S. D. Jackson, P. Golding, and T. A. King, “Measurements of the spectroscopic and energy transfer parameters for Er3+-doped and Er3+, Pr3+-codoped PbO–Bi2O3–Ga3O3 glasses,” J. Opt. Soc. Am. B 19, 2927–2937 (2002).
    [CrossRef]
  28. V. Ostrumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998).
    [CrossRef]
  29. Y. Mita, M. Togashi, and H. Yamamoto, “Energy transfer processes in rare-earth-ion-doped materials,” J. Lumin. 87–89, 1026–1028 (2000).
    [CrossRef]
  30. J. D. Zuegel and W. Seka, “Upconversion and reduced 4F3/2 upper-state lifetime in intensely pumped Nd:YLF,” Appl. Opt. 38, 2714–2723 (1999).
    [CrossRef]
  31. A. G. Avaneson, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Sherbakov, “Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
    [CrossRef]
  32. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1982).

2002 (3)

2001 (5)

V. Lupei, “Self-quenching of Nd3+ emission in laser garnet crystals,” Opt. Mater. 16, 137–152 (2001).
[CrossRef]

V. Lupei, A. Lupei, N. Pavel, T. Taira, and A. Ikesue, “Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals,” Appl. Phys. B 73, 757–762 (2001).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64, 092102 (2001).
[CrossRef]

D. L. Russell and K. Holliday, “Upconversion and energy transfer dynamics in Nd3+:KLiYF5,” Opt. Commun. 191, 277–294 (2001).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, “Luminescence self-quenching from 4F3/2, 2P3/2, and 4D3/2 neodymium levels in double sodium–yttrium fluoride crystals,” J. Lumin. 94–95, 343–347 (2001).
[CrossRef]

2000 (2)

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

Y. Mita, M. Togashi, and H. Yamamoto, “Energy transfer processes in rare-earth-ion-doped materials,” J. Lumin. 87–89, 1026–1028 (2000).
[CrossRef]

1999 (2)

J. D. Zuegel and W. Seka, “Upconversion and reduced 4F3/2 upper-state lifetime in intensely pumped Nd:YLF,” Appl. Opt. 38, 2714–2723 (1999).
[CrossRef]

P. J. Hardmann, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

1998 (5)

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[CrossRef]

S. Guy, C. L. Bonner, D. P. Shepard, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

M. Pollnau, P. J. Hardmann, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

V. Ostrumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998).
[CrossRef]

1997 (1)

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55, 8881–8886 (1997).
[CrossRef]

1995 (2)

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. M. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

1994 (1)

M. P. Hehlen, G. Frei, and H. U. Gudel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1% Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
[CrossRef]

1992 (1)

V. Lupei, A. Lupei, and S. Georgescu, “High-resolution spectroscopy of Nd3+ in YAlO3,” J. Phys.: Condens. Matter 4, L221–L224 (1992).

1989 (1)

V. Lupei, A. Lupei, S. Georgescu, and W. M. Yen, “Effects of energy transfer on quantum efficiency of Nd:YAG,” J. Appl. Phys. 66, 3792–3797 (1989).
[CrossRef]

1982 (1)

A. G. Avaneson, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Sherbakov, “Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

1979 (1)

L. D. Merkle and R. C. Powell, “Energy transfer among Nd3+ ions in garnet crystals,” Phys. Rev. B 20, 75–84 (1979).
[CrossRef]

1977 (1)

L. D. Zusman, “Kinetics of luminescence damping in the hopping mechanism of quenching,” Sov. Phys. JETP 46, 347–354 (1977).

1972 (2)

S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

M. V. Artamonova, Ch. M. Briskina, A. I. Burshtein, L. D. Zusman, and A. G. Skleznev, “Time variation of Nd3+ ion luminescence and an estimation of electron excitation migration along the ions in glass,” Sov. Phys. JETP 35, 457–461 (1972).

1967 (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

1953 (1)

D. L. Dexter, “Theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

1948 (1)

Th. Forster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
[CrossRef]

Al-Saleh, M.

Artamonova, M. V.

M. V. Artamonova, Ch. M. Briskina, A. I. Burshtein, L. D. Zusman, and A. G. Skleznev, “Time variation of Nd3+ ion luminescence and an estimation of electron excitation migration along the ions in glass,” Sov. Phys. JETP 35, 457–461 (1972).

Avaneson, A. G.

A. G. Avaneson, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Sherbakov, “Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Balda, R.

Barbosa-Garcia, O.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[CrossRef]

Bon, M.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Bonner, C. L.

S. Guy, C. L. Bonner, D. P. Shepard, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

Briskina, Ch. M.

M. V. Artamonova, Ch. M. Briskina, A. I. Burshtein, L. D. Zusman, and A. G. Skleznev, “Time variation of Nd3+ ion luminescence and an estimation of electron excitation migration along the ions in glass,” Sov. Phys. JETP 35, 457–461 (1972).

Burshtein, A. I.

M. V. Artamonova, Ch. M. Briskina, A. I. Burshtein, L. D. Zusman, and A. G. Skleznev, “Time variation of Nd3+ ion luminescence and an estimation of electron excitation migration along the ions in glass,” Sov. Phys. JETP 35, 457–461 (1972).

Clarkson, W. A.

P. J. Hardmann, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

M. Pollnau, P. J. Hardmann, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

Coleman, D. J.

Denker, B. I.

A. G. Avaneson, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Sherbakov, “Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Descroix, E.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “Theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Diaconescu, B.

Diaz-Torres, L. A.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[CrossRef]

Fernandez, J.

Ferrand, B.

S. Guy, C. L. Bonner, D. P. Shepard, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

Forster, Th.

Th. Forster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
[CrossRef]

Frei, G.

M. P. Hehlen, G. Frei, and H. U. Gudel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1% Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
[CrossRef]

Friel, G. J.

P. J. Hardmann, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

Garnier, N.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Georgescu, S.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64, 092102 (2001).
[CrossRef]

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. M. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

V. Lupei, A. Lupei, and S. Georgescu, “High-resolution spectroscopy of Nd3+ in YAlO3,” J. Phys.: Condens. Matter 4, L221–L224 (1992).

V. Lupei, A. Lupei, S. Georgescu, and W. M. Yen, “Effects of energy transfer on quantum efficiency of Nd:YAG,” J. Appl. Phys. 66, 3792–3797 (1989).
[CrossRef]

Golding, P.

Golubov, S. I.

S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

Gudel, H. U.

M. P. Hehlen, G. Frei, and H. U. Gudel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1% Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
[CrossRef]

Guy, S.

A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, “Luminescence self-quenching from 4F3/2, 2P3/2, and 4D3/2 neodymium levels in double sodium–yttrium fluoride crystals,” J. Lumin. 94–95, 343–347 (2001).
[CrossRef]

S. Guy, C. L. Bonner, D. P. Shepard, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

Guyot, Y.

A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, “Luminescence self-quenching from 4F3/2, 2P3/2, and 4D3/2 neodymium levels in double sodium–yttrium fluoride crystals,” J. Lumin. 94–95, 343–347 (2001).
[CrossRef]

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Hanna, D. C.

P. J. Hardmann, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

M. Pollnau, P. J. Hardmann, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

S. Guy, C. L. Bonner, D. P. Shepard, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

Hardman, P. J.

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

Hardmann, P. J.

P. J. Hardmann, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

M. Pollnau, P. J. Hardmann, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, G. Frei, and H. U. Gudel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1% Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
[CrossRef]

Hernandez, J. M.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[CrossRef]

Holliday, K.

D. L. Russell and K. Holliday, “Upconversion and energy transfer dynamics in Nd3+:KLiYF5,” Opt. Commun. 191, 277–294 (2001).
[CrossRef]

Huber, G.

Ikesue, A.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64, 092102 (2001).
[CrossRef]

V. Lupei, A. Lupei, N. Pavel, T. Taira, and A. Ikesue, “Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals,” Appl. Phys. B 73, 757–762 (2001).
[CrossRef]

Iparraguirre, I.

Ivanova, S. E.

A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, “Luminescence self-quenching from 4F3/2, 2P3/2, and 4D3/2 neodymium levels in double sodium–yttrium fluoride crystals,” J. Lumin. 94–95, 343–347 (2001).
[CrossRef]

Jackson, S. D.

Jensen, T.

Joubert, M.-F.

A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, “Luminescence self-quenching from 4F3/2, 2P3/2, and 4D3/2 neodymium levels in double sodium–yttrium fluoride crystals,” J. Lumin. 94–95, 343–347 (2001).
[CrossRef]

Kern, M. A.

M. Pollnau, P. J. Hardmann, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

King, T. A.

Konobeev, Yu. V.

S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

Kurimura, S.

Laporte, P.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Lupei, A.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64, 092102 (2001).
[CrossRef]

V. Lupei, A. Lupei, N. Pavel, T. Taira, and A. Ikesue, “Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals,” Appl. Phys. B 73, 757–762 (2001).
[CrossRef]

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. M. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

V. Lupei, A. Lupei, and S. Georgescu, “High-resolution spectroscopy of Nd3+ in YAlO3,” J. Phys.: Condens. Matter 4, L221–L224 (1992).

V. Lupei, A. Lupei, S. Georgescu, and W. M. Yen, “Effects of energy transfer on quantum efficiency of Nd:YAG,” J. Appl. Phys. 66, 3792–3797 (1989).
[CrossRef]

Lupei, V.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64, 092102 (2001).
[CrossRef]

V. Lupei, “Self-quenching of Nd3+ emission in laser garnet crystals,” Opt. Mater. 16, 137–152 (2001).
[CrossRef]

V. Lupei, A. Lupei, N. Pavel, T. Taira, and A. Ikesue, “Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals,” Appl. Phys. B 73, 757–762 (2001).
[CrossRef]

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. M. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

V. Lupei, A. Lupei, and S. Georgescu, “High-resolution spectroscopy of Nd3+ in YAlO3,” J. Phys.: Condens. Matter 4, L221–L224 (1992).

V. Lupei, A. Lupei, S. Georgescu, and W. M. Yen, “Effects of energy transfer on quantum efficiency of Nd:YAG,” J. Appl. Phys. 66, 3792–3797 (1989).
[CrossRef]

Manaa, H.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Merkle, L. D.

L. D. Merkle and R. C. Powell, “Energy transfer among Nd3+ ions in garnet crystals,” Phys. Rev. B 20, 75–84 (1979).
[CrossRef]

Meyn, J.-P.

Mita, Y.

Y. Mita, M. Togashi, and H. Yamamoto, “Energy transfer processes in rare-earth-ion-doped materials,” J. Lumin. 87–89, 1026–1028 (2000).
[CrossRef]

Moncorgé, R.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Nanau, P. M.

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. M. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

Noginov, M. A.

Osiko, V. V.

A. G. Avaneson, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Sherbakov, “Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Ostrumov, V.

Pavel, N.

V. Lupei, A. Lupei, N. Pavel, T. Taira, and A. Ikesue, “Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals,” Appl. Phys. B 73, 757–762 (2001).
[CrossRef]

Pinto-Robledo, V.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[CrossRef]

Pirumov, S. S.

A. G. Avaneson, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Sherbakov, “Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Pollnau, M.

P. J. Hardmann, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

M. Pollnau, P. J. Hardmann, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

Powell, R. C.

L. D. Merkle and R. C. Powell, “Energy transfer among Nd3+ ions in garnet crystals,” Phys. Rev. B 20, 75–84 (1979).
[CrossRef]

Rivoire, J. Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Russell, D. L.

D. L. Russell and K. Holliday, “Upconversion and energy transfer dynamics in Nd3+:KLiYF5,” Opt. Commun. 191, 277–294 (2001).
[CrossRef]

Sakun, V. P.

A. G. Avaneson, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Sherbakov, “Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Sato, Y.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64, 092102 (2001).
[CrossRef]

Seka, W.

Shcherbakov, I. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55, 8881–8886 (1997).
[CrossRef]

Shepard, D. P.

S. Guy, C. L. Bonner, D. P. Shepard, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

Sherbakov, I. A.

A. G. Avaneson, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Sherbakov, “Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Skleznev, A. G.

M. V. Artamonova, Ch. M. Briskina, A. I. Burshtein, L. D. Zusman, and A. G. Skleznev, “Time variation of Nd3+ ion luminescence and an estimation of electron excitation migration along the ions in glass,” Sov. Phys. JETP 35, 457–461 (1972).

Smirnov, V. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55, 8881–8886 (1997).
[CrossRef]

A. G. Avaneson, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Sherbakov, “Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Stoicescu, C.

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. M. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

Sumida, D.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[CrossRef]

Taira, T.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64, 092102 (2001).
[CrossRef]

V. Lupei, A. Lupei, N. Pavel, T. Taira, and A. Ikesue, “Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals,” Appl. Phys. B 73, 757–762 (2001).
[CrossRef]

Tanimoto, O.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

Tiseanu, C.

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. M. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

Tkachuk, A. M.

A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, “Luminescence self-quenching from 4F3/2, 2P3/2, and 4D3/2 neodymium levels in double sodium–yttrium fluoride crystals,” J. Lumin. 94–95, 343–347 (2001).
[CrossRef]

Togashi, M.

Y. Mita, M. Togashi, and H. Yamamoto, “Energy transfer processes in rare-earth-ion-doped materials,” J. Lumin. 87–89, 1026–1028 (2000).
[CrossRef]

Tropper, A. C.

S. Guy, C. L. Bonner, D. P. Shepard, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

Voda, M.

Yamamoto, H.

Y. Mita, M. Togashi, and H. Yamamoto, “Energy transfer processes in rare-earth-ion-doped materials,” J. Lumin. 87–89, 1026–1028 (2000).
[CrossRef]

Yen, W. M.

V. Lupei, A. Lupei, S. Georgescu, and W. M. Yen, “Effects of energy transfer on quantum efficiency of Nd:YAG,” J. Appl. Phys. 66, 3792–3797 (1989).
[CrossRef]

Yokota, M.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

Zubenko, D. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55, 8881–8886 (1997).
[CrossRef]

Zuegel, J. D.

Zusman, L. D.

L. D. Zusman, “Kinetics of luminescence damping in the hopping mechanism of quenching,” Sov. Phys. JETP 46, 347–354 (1977).

M. V. Artamonova, Ch. M. Briskina, A. I. Burshtein, L. D. Zusman, and A. G. Skleznev, “Time variation of Nd3+ ion luminescence and an estimation of electron excitation migration along the ions in glass,” Sov. Phys. JETP 35, 457–461 (1972).

Ann. Phys. (Leipzig) (1)

Th. Forster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

V. Lupei, A. Lupei, N. Pavel, T. Taira, and A. Ikesue, “Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals,” Appl. Phys. B 73, 757–762 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Guy, C. L. Bonner, D. P. Shepard, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

P. J. Hardmann, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

J. Appl. Phys. (1)

V. Lupei, A. Lupei, S. Georgescu, and W. M. Yen, “Effects of energy transfer on quantum efficiency of Nd:YAG,” J. Appl. Phys. 66, 3792–3797 (1989).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter, “Theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

J. Lumin. (2)

A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, “Luminescence self-quenching from 4F3/2, 2P3/2, and 4D3/2 neodymium levels in double sodium–yttrium fluoride crystals,” J. Lumin. 94–95, 343–347 (2001).
[CrossRef]

Y. Mita, M. Togashi, and H. Yamamoto, “Energy transfer processes in rare-earth-ion-doped materials,” J. Lumin. 87–89, 1026–1028 (2000).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Soc. Jpn. (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

J. Phys.: Condens. Matter (1)

V. Lupei, A. Lupei, and S. Georgescu, “High-resolution spectroscopy of Nd3+ in YAlO3,” J. Phys.: Condens. Matter 4, L221–L224 (1992).

Opt. Commun. (2)

D. L. Russell and K. Holliday, “Upconversion and energy transfer dynamics in Nd3+:KLiYF5,” Opt. Commun. 191, 277–294 (2001).
[CrossRef]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

Opt. Mater. (2)

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[CrossRef]

V. Lupei, “Self-quenching of Nd3+ emission in laser garnet crystals,” Opt. Mater. 16, 137–152 (2001).
[CrossRef]

Phys. Rev. B (8)

L. D. Merkle and R. C. Powell, “Energy transfer among Nd3+ ions in garnet crystals,” Phys. Rev. B 20, 75–84 (1979).
[CrossRef]

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55, 8881–8886 (1997).
[CrossRef]

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64, 092102 (2001).
[CrossRef]

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. M. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

M. P. Hehlen, G. Frei, and H. U. Gudel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1% Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
[CrossRef]

M. Pollnau, P. J. Hardmann, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. G. Avaneson, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Sherbakov, “Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Sov. Phys. JETP (2)

L. D. Zusman, “Kinetics of luminescence damping in the hopping mechanism of quenching,” Sov. Phys. JETP 46, 347–354 (1977).

M. V. Artamonova, Ch. M. Briskina, A. I. Burshtein, L. D. Zusman, and A. G. Skleznev, “Time variation of Nd3+ ion luminescence and an estimation of electron excitation migration along the ions in glass,” Sov. Phys. JETP 35, 457–461 (1972).

Sov. Phys. Solid State (1)

S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

Other (1)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Example of the decay curve for the KLM:Nd3+ sample for a pumping energy of Γ=3.5 mJ.

Fig. 2
Fig. 2

Scheme of the energy levels of Nd3+ ions. The three pairs of arrows show UPC processes UPC1, UPC2, and UPC3. Γ is the pump laser.

Fig. 3
Fig. 3

Decay curve and fit for the BaYF:Nd3+ sample with Γ=1.0 mJ (circles) and Γ=3.2 mJ (triangles).

Fig. 4
Fig. 4

Comparison of the theoretical decay curves for the BaYF sample with Γ=3.2 mJ. The solid curve represents Eq. (11) for the hopping limit regime and the dashed curve represents Eq. (3) for the rate-equation formalism. For both curves τ=387 μs.

Fig. 5
Fig. 5

Values of Cdan(0) for the samples under investigation.

Tables (5)

Tables Icon

Table 1 Absorption Coefficient, Peak Wavelength, Polarization, and Nd3+ Concentration of the Samples Under Investigation

Tables Icon

Table 2 Experimental Values of Cdan(0) and τ for BaY2F8: Nd3+ at 3.75%

Tables Icon

Table 3 Experimental Values of Cdan(0) and τ for YLF:Nd3+ at 1.05%

Tables Icon

Table 4 Experimental Values of Cdan(0) and τ for KLM:Nd3+ at 5.3%

Tables Icon

Table 5 Results of the Fit of Eq. (18 ) for Cda and Waist

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

dn(t)dt=-n(t)τ-αn(t)2+Γ(t),
dn(t)dt=-n(t)τ-αn(t)2,
n(t)=n(0)exp(-t/τ)1+ατn(0)[1-exp(-t/τ)].
CdaCddnd(s-m)/3
CdaCdd.
df(r, t)dt=-W(r)f(r, t)-1τ0 f(r, t)+1τ0,
F(t)=0W(r)f(r, t)4πr2dr,
dn(t)dt=-n(t)τ-F(t)n(t)2,
1τ0=Cddnds/3.
n(t)=n(0)exp(-t/τ)1+A[(1+τ0/τ)1/2erf{[t(1/τ0+1/τ)]1/2}-exp(-t/τ)erf(t/τ0)],
A=2π23 n(0)τCda/τ0
erf(x)=2π0xexp(-t2)dt.
n(t)=n(0)exp(-t/τ)1+23 π2n(0)τCdaerf(t/τ).
dndt (0)-n(0)τ-F(0)n(0)2.
F(0)=aCdar6 4πr2dr=4π3Cdaa3,
n˙(t)=Γ(t)Vλphc1-2n(t)N0[1-exp(-αal)],
V=lπωeff2.
n˙(t)N0-2n(t)=Γ(t)Γ0,
Γ0=πωeff2lhcλpN01-exp(-αal).
n(0)=N021-exp-2 ΓΓ0.
Cdan(0)=CdaN021-exp-2 ΓΓ0.
ω0fλD=30μm,

Metrics