Abstract

A novel technique to generate ultrashort fundamental solitons is proposed and demonstrated numerically. The technique utilizes both the multisoliton pulse-compression effect and the switching characteristics of a nonlinear optical loop mirror constructed from dispersion-decreasing fiber. We show that, in contrast to the conventional soliton-effect pulse compression in which compressed pulses are always accompanied by broad pedestals, the proposed technique can completely suppress pulse pedestals, and the compressed pulses propagate like fundamental solitons. Unlike the adiabatic-compression technique based on dispersion-decreasing fibers that are limited to input pulse widths <5 ps, the proposed technique does not require the adiabatic condition and therefore can be used to compress long pulses by use of reasonable fiber lengths. Furthermore, the scheme is more tolerant of initial frequency chirps than the adiabatic-compression technique, and it is shown that positive chirps are beneficial to ultrashort soliton generation. The influences of higher-order effects such as Raman self-scattering and third-order dispersion on soliton generation are also investigated, and it is found that Raman self-scattering can significantly enhance pulse compression under certain conditions.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).
  2. M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies,” IEEE J. Sel. Top. Quantum Electron. 6, 363–396 (2000).
    [CrossRef]
  3. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
    [CrossRef]
  4. K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
    [CrossRef]
  5. K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
    [CrossRef]
  6. S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991).
    [CrossRef]
  7. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
    [CrossRef] [PubMed]
  8. M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
    [CrossRef]
  9. K. R. Tamura and M. Nakazawa, “Femtosecond soliton generation over a 32 nm wavelength range using a dispersion-flattened dispersion-decreasing fiber,” IEEE Photon. Technol. Lett. 11, 319–321 (1999).
    [CrossRef]
  10. K. T. Chan and W. H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000).
    [CrossRef]
  11. R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7, 512–514 (1982).
    [CrossRef] [PubMed]
  12. B. Nikolaus, D. Grischkowsky, and A. C. Balant, “Optical pulse reshaping based on the nonlinear birefringence of single-mode optical fibers,” Opt. Lett. 8, 189–191 (1983).
    [CrossRef] [PubMed]
  13. R. Yatsu, K. Taira, and M. Tsuchiya, “High-quality sub-100-fs optical pulse generation by fiber-optic soliton compression of gain-switched distributed-feedback laser-diode pulses in conjunction with nonlinear optical fiber loops,” Opt. Lett. 24, 1172–1174 (1999).
    [CrossRef]
  14. K. R. Tamura and M. Nakazawa, “Spectral-smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 11, 230–232 (1999).
    [CrossRef]
  15. M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
    [CrossRef]
  16. K. R. Tamura and M. Nakazawa, “A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 526–528 (2001).
    [CrossRef]
  17. K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990).
    [CrossRef] [PubMed]
  18. A. L. Steele, “Pulse compression by an optical fiber loop mirror constructed from two different fibers,” Electron. Lett. 29, 1972–1974 (1993).
    [CrossRef]
  19. I. Y. Khrushchev, I. H. White, and R. V. Penty, “High-quality laser diode pulse compression in dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009–1010 (1998).
    [CrossRef]
  20. L. Chusseau and E. Delevague, “250-fs optical pulse generation by simultaneously soliton compression and shaping in a nonlinear optical loop mirror including a weak attenuation,” Opt. Lett. 19, 734–736 (1994).
    [CrossRef] [PubMed]
  21. J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43–47 (2000).
    [CrossRef]
  22. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fiber for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
    [CrossRef]
  23. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
    [CrossRef] [PubMed]
  24. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Gen-eration of fundamental soliton train for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
    [CrossRef]
  25. S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, and D. N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550 nm,” Electron. Lett. 28, 1210–1212 (1992).
    [CrossRef]
  26. A. V. Shipulin, D. G. Fursa, E. A. Golovchenko, and E. M. Dianov, “High repetition rate cw fundamental soliton generation using multisoliton pulse compression in a varying dispersion fiber,” Electron. Lett. 29, 1401–1403 (1993).
    [CrossRef]
  27. A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380–1382 (1994).
    [CrossRef]
  28. A. L. Steele and J. P. Hemingway, “Nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 123, 487–491 (1996).
    [CrossRef]
  29. J. L. S. Lima and A. S. B. Sombra, “Soliton and quasi-soliton switching in nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 163, 292–300 (1999).
    [CrossRef]
  30. A. Boskovic, S. V. Chernikov, and J. R. Taylor, “Femtosec-ond figure of eight Yb:Er fiber laser incorporating a dispersion decreasing fiber,” Electron. Lett. 31, 1446–1448 (1995).
    [CrossRef]
  31. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995), Chapts. 5 and 6.
  32. A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33, 620–628 (1997).
    [CrossRef]
  33. A. Hasegawa, Optical Solitons in Fibers (Springer-Verlag, Berlin, 1989).
  34. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
    [CrossRef] [PubMed]
  35. K. C. Chan and H. F. Liu, “Effects of Raman scattering and frequency chirping on soliton-effect pulse compression,” Opt. Lett. 18, 1150–1152 (1993).
    [CrossRef] [PubMed]
  36. C. Desem and P. L. Chu, “Effect of chirping on soliton propagation in single-mode optical fibers,” Opt. Lett. 11, 248–250 (1986).
    [CrossRef]
  37. J. D. Minelly, A. Galvanauskas, M. E. Fermann, D. Harter, J. E. Caplen, Z. J. Chen, and D. N. Payne, “Femtosecond pulse amplification in cladding-pumped fibers,” Opt. Lett. 20, 1797–1799 (1995).
    [CrossRef] [PubMed]
  38. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, Boston, Mass., 2001), Chapt. 6.

2001 (1)

K. R. Tamura and M. Nakazawa, “A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 526–528 (2001).
[CrossRef]

2000 (3)

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43–47 (2000).
[CrossRef]

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies,” IEEE J. Sel. Top. Quantum Electron. 6, 363–396 (2000).
[CrossRef]

K. T. Chan and W. H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000).
[CrossRef]

1999 (5)

K. R. Tamura and M. Nakazawa, “Spectral-smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 11, 230–232 (1999).
[CrossRef]

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[CrossRef]

K. R. Tamura and M. Nakazawa, “Femtosecond soliton generation over a 32 nm wavelength range using a dispersion-flattened dispersion-decreasing fiber,” IEEE Photon. Technol. Lett. 11, 319–321 (1999).
[CrossRef]

J. L. S. Lima and A. S. B. Sombra, “Soliton and quasi-soliton switching in nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 163, 292–300 (1999).
[CrossRef]

R. Yatsu, K. Taira, and M. Tsuchiya, “High-quality sub-100-fs optical pulse generation by fiber-optic soliton compression of gain-switched distributed-feedback laser-diode pulses in conjunction with nonlinear optical fiber loops,” Opt. Lett. 24, 1172–1174 (1999).
[CrossRef]

1998 (1)

I. Y. Khrushchev, I. H. White, and R. V. Penty, “High-quality laser diode pulse compression in dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009–1010 (1998).
[CrossRef]

1997 (2)

M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33, 620–628 (1997).
[CrossRef]

1996 (1)

A. L. Steele and J. P. Hemingway, “Nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 123, 487–491 (1996).
[CrossRef]

1995 (4)

A. Boskovic, S. V. Chernikov, and J. R. Taylor, “Femtosec-ond figure of eight Yb:Er fiber laser incorporating a dispersion decreasing fiber,” Electron. Lett. 31, 1446–1448 (1995).
[CrossRef]

J. D. Minelly, A. Galvanauskas, M. E. Fermann, D. Harter, J. E. Caplen, Z. J. Chen, and D. N. Payne, “Femtosecond pulse amplification in cladding-pumped fibers,” Opt. Lett. 20, 1797–1799 (1995).
[CrossRef] [PubMed]

K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
[CrossRef]

K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[CrossRef]

1994 (4)

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380–1382 (1994).
[CrossRef]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fiber for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
[CrossRef]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
[CrossRef] [PubMed]

L. Chusseau and E. Delevague, “250-fs optical pulse generation by simultaneously soliton compression and shaping in a nonlinear optical loop mirror including a weak attenuation,” Opt. Lett. 19, 734–736 (1994).
[CrossRef] [PubMed]

1993 (4)

S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[CrossRef] [PubMed]

K. C. Chan and H. F. Liu, “Effects of Raman scattering and frequency chirping on soliton-effect pulse compression,” Opt. Lett. 18, 1150–1152 (1993).
[CrossRef] [PubMed]

A. L. Steele, “Pulse compression by an optical fiber loop mirror constructed from two different fibers,” Electron. Lett. 29, 1972–1974 (1993).
[CrossRef]

A. V. Shipulin, D. G. Fursa, E. A. Golovchenko, and E. M. Dianov, “High repetition rate cw fundamental soliton generation using multisoliton pulse compression in a varying dispersion fiber,” Electron. Lett. 29, 1401–1403 (1993).
[CrossRef]

1992 (1)

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, and D. N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550 nm,” Electron. Lett. 28, 1210–1212 (1992).
[CrossRef]

1991 (2)

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Gen-eration of fundamental soliton train for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
[CrossRef]

S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991).
[CrossRef]

1990 (1)

1988 (1)

1986 (1)

1983 (1)

1982 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Ahmed, K. A.

K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
[CrossRef]

Ashkin, A.

Balant, A. C.

Boskovic, A.

A. Boskovic, S. V. Chernikov, and J. R. Taylor, “Femtosec-ond figure of eight Yb:Er fiber laser incorporating a dispersion decreasing fiber,” Electron. Lett. 31, 1446–1448 (1995).
[CrossRef]

Botineau, J.

Cao, W. H.

K. T. Chan and W. H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000).
[CrossRef]

Caplen, J. E.

Chan, K. C.

K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[CrossRef]

K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
[CrossRef]

K. C. Chan and H. F. Liu, “Effects of Raman scattering and frequency chirping on soliton-effect pulse compression,” Opt. Lett. 18, 1150–1152 (1993).
[CrossRef] [PubMed]

Chan, K. T.

K. T. Chan and W. H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000).
[CrossRef]

Chen, Z. J.

Chernikov, S. V.

A. Boskovic, S. V. Chernikov, and J. R. Taylor, “Femtosec-ond figure of eight Yb:Er fiber laser incorporating a dispersion decreasing fiber,” Electron. Lett. 31, 1446–1448 (1995).
[CrossRef]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fiber for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
[CrossRef]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[CrossRef] [PubMed]

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, and D. N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550 nm,” Electron. Lett. 28, 1210–1212 (1992).
[CrossRef]

S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991).
[CrossRef]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Gen-eration of fundamental soliton train for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
[CrossRef]

Chu, P. L.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33, 620–628 (1997).
[CrossRef]

C. Desem and P. L. Chu, “Effect of chirping on soliton propagation in single-mode optical fibers,” Opt. Lett. 11, 248–250 (1986).
[CrossRef]

Chusseau, L.

Delevague, E.

Desem, C.

Dianov, E. M.

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380–1382 (1994).
[CrossRef]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[CrossRef] [PubMed]

A. V. Shipulin, D. G. Fursa, E. A. Golovchenko, and E. M. Dianov, “High repetition rate cw fundamental soliton generation using multisoliton pulse compression in a varying dispersion fiber,” Electron. Lett. 29, 1401–1403 (1993).
[CrossRef]

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, and D. N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550 nm,” Electron. Lett. 28, 1210–1212 (1992).
[CrossRef]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Gen-eration of fundamental soliton train for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
[CrossRef]

Doran, N. J.

Fermann, M. E.

Fursa, D. G.

A. V. Shipulin, D. G. Fursa, E. A. Golovchenko, and E. M. Dianov, “High repetition rate cw fundamental soliton generation using multisoliton pulse compression in a varying dispersion fiber,” Electron. Lett. 29, 1401–1403 (1993).
[CrossRef]

Galvanauskas, A.

Gao, Y.

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43–47 (2000).
[CrossRef]

Golovchenko, E. A.

A. V. Shipulin, D. G. Fursa, E. A. Golovchenko, and E. M. Dianov, “High repetition rate cw fundamental soliton generation using multisoliton pulse compression in a varying dispersion fiber,” Electron. Lett. 29, 1401–1403 (1993).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Grischkowsky, D.

Harter, D.

Hatami-Hanza, H.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33, 620–628 (1997).
[CrossRef]

Hemingway, J. P.

A. L. Steele and J. P. Hemingway, “Nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 123, 487–491 (1996).
[CrossRef]

Kashyap, R.

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fiber for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
[CrossRef]

Khrushchev, I. Y.

I. Y. Khrushchev, I. H. White, and R. V. Penty, “High-quality laser diode pulse compression in dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009–1010 (1998).
[CrossRef]

Kubota, H.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies,” IEEE J. Sel. Top. Quantum Electron. 6, 363–396 (2000).
[CrossRef]

Laming, R. I.

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, and D. N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550 nm,” Electron. Lett. 28, 1210–1212 (1992).
[CrossRef]

Li, Y.

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43–47 (2000).
[CrossRef]

Lima, J. L. S.

J. L. S. Lima and A. S. B. Sombra, “Soliton and quasi-soliton switching in nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 163, 292–300 (1999).
[CrossRef]

Liu, H. F.

M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
[CrossRef]

K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[CrossRef]

K. C. Chan and H. F. Liu, “Effects of Raman scattering and frequency chirping on soliton-effect pulse compression,” Opt. Lett. 18, 1150–1152 (1993).
[CrossRef] [PubMed]

Lou, C.

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43–47 (2000).
[CrossRef]

Mamyshev, P. V.

S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991).
[CrossRef]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Gen-eration of fundamental soliton train for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
[CrossRef]

Matsui, Y.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[CrossRef]

Minelly, J. D.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Mostofi, A.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33, 620–628 (1997).
[CrossRef]

Nakazawa, M.

K. R. Tamura and M. Nakazawa, “A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 526–528 (2001).
[CrossRef]

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies,” IEEE J. Sel. Top. Quantum Electron. 6, 363–396 (2000).
[CrossRef]

K. R. Tamura and M. Nakazawa, “Femtosecond soliton generation over a 32 nm wavelength range using a dispersion-flattened dispersion-decreasing fiber,” IEEE Photon. Technol. Lett. 11, 319–321 (1999).
[CrossRef]

K. R. Tamura and M. Nakazawa, “Spectral-smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 11, 230–232 (1999).
[CrossRef]

Nikolaus, B.

Payne, D. N.

J. D. Minelly, A. Galvanauskas, M. E. Fermann, D. Harter, J. E. Caplen, Z. J. Chen, and D. N. Payne, “Femtosecond pulse amplification in cladding-pumped fibers,” Opt. Lett. 20, 1797–1799 (1995).
[CrossRef] [PubMed]

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380–1382 (1994).
[CrossRef]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[CrossRef] [PubMed]

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, and D. N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550 nm,” Electron. Lett. 28, 1210–1212 (1992).
[CrossRef]

Pelusi, M. D.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[CrossRef]

M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

Penty, R. V.

I. Y. Khrushchev, I. H. White, and R. V. Penty, “High-quality laser diode pulse compression in dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009–1010 (1998).
[CrossRef]

Richardson, D. J.

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380–1382 (1994).
[CrossRef]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[CrossRef] [PubMed]

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, and D. N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550 nm,” Electron. Lett. 28, 1210–1212 (1992).
[CrossRef]

Sahara, A.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies,” IEEE J. Sel. Top. Quantum Electron. 6, 363–396 (2000).
[CrossRef]

Shipulin, A. V.

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380–1382 (1994).
[CrossRef]

A. V. Shipulin, D. G. Fursa, E. A. Golovchenko, and E. M. Dianov, “High repetition rate cw fundamental soliton generation using multisoliton pulse compression in a varying dispersion fiber,” Electron. Lett. 29, 1401–1403 (1993).
[CrossRef]

Smith, K.

Sombra, A. S. B.

J. L. S. Lima and A. S. B. Sombra, “Soliton and quasi-soliton switching in nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 163, 292–300 (1999).
[CrossRef]

Steele, A. L.

A. L. Steele and J. P. Hemingway, “Nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 123, 487–491 (1996).
[CrossRef]

A. L. Steele, “Pulse compression by an optical fiber loop mirror constructed from two different fibers,” Electron. Lett. 29, 1972–1974 (1993).
[CrossRef]

Stolen, R. H.

R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7, 512–514 (1982).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Suzuki, A.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[CrossRef]

Suzuki, K.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies,” IEEE J. Sel. Top. Quantum Electron. 6, 363–396 (2000).
[CrossRef]

Taira, K.

Tamura, K. R.

K. R. Tamura and M. Nakazawa, “A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 526–528 (2001).
[CrossRef]

K. R. Tamura and M. Nakazawa, “Femtosecond soliton generation over a 32 nm wavelength range using a dispersion-flattened dispersion-decreasing fiber,” IEEE Photon. Technol. Lett. 11, 319–321 (1999).
[CrossRef]

K. R. Tamura and M. Nakazawa, “Spectral-smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 11, 230–232 (1999).
[CrossRef]

Taylor, J. R.

A. Boskovic, S. V. Chernikov, and J. R. Taylor, “Femtosec-ond figure of eight Yb:Er fiber laser incorporating a dispersion decreasing fiber,” Electron. Lett. 31, 1446–1448 (1995).
[CrossRef]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fiber for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
[CrossRef]

Tsuchiya, M.

White, I. H.

I. Y. Khrushchev, I. H. White, and R. V. Penty, “High-quality laser diode pulse compression in dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009–1010 (1998).
[CrossRef]

Wigley, P. G. J.

Wood, D.

Wu, J.

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43–47 (2000).
[CrossRef]

Yamada, E.

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies,” IEEE J. Sel. Top. Quantum Electron. 6, 363–396 (2000).
[CrossRef]

Yatsu, R.

Electron. Lett. (6)

A. L. Steele, “Pulse compression by an optical fiber loop mirror constructed from two different fibers,” Electron. Lett. 29, 1972–1974 (1993).
[CrossRef]

I. Y. Khrushchev, I. H. White, and R. V. Penty, “High-quality laser diode pulse compression in dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009–1010 (1998).
[CrossRef]

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, and D. N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550 nm,” Electron. Lett. 28, 1210–1212 (1992).
[CrossRef]

A. V. Shipulin, D. G. Fursa, E. A. Golovchenko, and E. M. Dianov, “High repetition rate cw fundamental soliton generation using multisoliton pulse compression in a varying dispersion fiber,” Electron. Lett. 29, 1401–1403 (1993).
[CrossRef]

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fiber for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994).
[CrossRef]

A. Boskovic, S. V. Chernikov, and J. R. Taylor, “Femtosec-ond figure of eight Yb:Er fiber laser incorporating a dispersion decreasing fiber,” Electron. Lett. 31, 1446–1448 (1995).
[CrossRef]

IEEE J. Quantum Electron. (5)

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33, 620–628 (1997).
[CrossRef]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Gen-eration of fundamental soliton train for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
[CrossRef]

K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[CrossRef]

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[CrossRef]

M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies,” IEEE J. Sel. Top. Quantum Electron. 6, 363–396 (2000).
[CrossRef]

K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

K. R. Tamura and M. Nakazawa, “Femtosecond soliton generation over a 32 nm wavelength range using a dispersion-flattened dispersion-decreasing fiber,” IEEE Photon. Technol. Lett. 11, 319–321 (1999).
[CrossRef]

K. R. Tamura and M. Nakazawa, “A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 526–528 (2001).
[CrossRef]

K. R. Tamura and M. Nakazawa, “Spectral-smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 11, 230–232 (1999).
[CrossRef]

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380–1382 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43–47 (2000).
[CrossRef]

K. T. Chan and W. H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000).
[CrossRef]

A. L. Steele and J. P. Hemingway, “Nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 123, 487–491 (1996).
[CrossRef]

J. L. S. Lima and A. S. B. Sombra, “Soliton and quasi-soliton switching in nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 163, 292–300 (1999).
[CrossRef]

Opt. Lett. (11)

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
[CrossRef] [PubMed]

N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
[CrossRef] [PubMed]

K. C. Chan and H. F. Liu, “Effects of Raman scattering and frequency chirping on soliton-effect pulse compression,” Opt. Lett. 18, 1150–1152 (1993).
[CrossRef] [PubMed]

C. Desem and P. L. Chu, “Effect of chirping on soliton propagation in single-mode optical fibers,” Opt. Lett. 11, 248–250 (1986).
[CrossRef]

J. D. Minelly, A. Galvanauskas, M. E. Fermann, D. Harter, J. E. Caplen, Z. J. Chen, and D. N. Payne, “Femtosecond pulse amplification in cladding-pumped fibers,” Opt. Lett. 20, 1797–1799 (1995).
[CrossRef] [PubMed]

R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7, 512–514 (1982).
[CrossRef] [PubMed]

B. Nikolaus, D. Grischkowsky, and A. C. Balant, “Optical pulse reshaping based on the nonlinear birefringence of single-mode optical fibers,” Opt. Lett. 8, 189–191 (1983).
[CrossRef] [PubMed]

R. Yatsu, K. Taira, and M. Tsuchiya, “High-quality sub-100-fs optical pulse generation by fiber-optic soliton compression of gain-switched distributed-feedback laser-diode pulses in conjunction with nonlinear optical fiber loops,” Opt. Lett. 24, 1172–1174 (1999).
[CrossRef]

L. Chusseau and E. Delevague, “250-fs optical pulse generation by simultaneously soliton compression and shaping in a nonlinear optical loop mirror including a weak attenuation,” Opt. Lett. 19, 734–736 (1994).
[CrossRef] [PubMed]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[CrossRef] [PubMed]

K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Other (4)

G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, Boston, Mass., 2001), Chapt. 6.

A. Hasegawa, Optical Solitons in Fibers (Springer-Verlag, Berlin, 1989).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995), Chapts. 5 and 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the DD-NOLM. Input pulses are launched into port 1, and compressed pulses are obtained from port 2.

Fig. 2
Fig. 2

Temporal shapes of the transmitted pulse in (a) linear and (b) logarithmic scale. (c) Spectrum and (d) frequency chirp (solid curve) and pulse shape (dashed curve) of the transmitted pulse. The dashed curves in (a) and (b) represent a hyperbolic-secant pulse having the same peak intensity and width (FWHM) as those of the transmitted pulse. The parameters are N=6, TFWHM=30 ps, Geff=3, Γ=0.332, and ξ=0.336.

Fig. 3
Fig. 3

Clockwise (solid curve) and counterclockwise (dashed curve) traveling pulses before recombination. The dash-dotted curve shows the transmitted pulse.

Fig. 4
Fig. 4

Local compression factors of the clockwise (solid curve) and counterclockwise (dashed curve) pulses during their evolution in the loop under the same conditions as those of Fig. 2.

Fig. 5
Fig. 5

Evolution of the transmitted pulse of Fig. 2(a) in a lossless fiber with constant dispersion identical to the initial dispersion β2(0) of the DDF loop.

Fig. 6
Fig. 6

Variation of the compression factor and corresponding pedestal energy with the loop length. In all cases, the input pulse is a sixth-order soliton with TFWHM=30 ps, and the dispersion decreasing rate of the loop is identical to that used in Fig. 2.

Fig. 7
Fig. 7

Variation of the compression factor, pedestal energy, and corresponding optimum loop length with the effective amplification (Geff). In all cases, the input soliton order is fixed at N=6 with TFWHM=30 ps.

Fig. 8
Fig. 8

Variation of the compression factor, pedestal energy, and optimum loop length with input soliton order N. For all values of N, the loop has an effective amplification of Geff=3, and the input soliton width is fixed at TFWHM=30 ps.

Fig. 9
Fig. 9

Optimally compressed pulse shapes for N=6, TFWHM=30 ps, and with initial chirps of (a) C=2, (b) C=-2, and (c) C=4. In all cases the effective amplification of the loop is fixed at Geff=3. The dashed curve in each case represents a hyperbolic-secant pulse having the same peak intensity and width (FWHM) as those of the compressed pulse.

Fig. 10
Fig. 10

Evolution of the compressed pulses corresponding to the solid curves of Figs. 9(a)–9(c) in a lossless fiber with constant dispersion identical to the initial dispersion β2(0) of the DDF loop.

Fig. 11
Fig. 11

Optimally compressed shapes of a 1-ps sixth-order soliton without RSS and TOD (dotted curve), with both RSS and TOD (solid curve), and with RSS only (dashed curve). In all cases, the effective amplification of the loop is Geff=3.

Fig. 12
Fig. 12

Variation of the compression factor, pedestal energy, and optimum loop length with initial soliton width TFWHM when only RSS is included. In each case the input is a sixth-order soliton, and the effective amplification of the loop is Geff=3.

Tables (2)

Tables Icon

Table 1 Compression Results for Input Pulses with N = 6, TFWHM = 30 ps, C = 2, -2, and 4, and Effective Amplification of Loop Fixed at Geff = 3

Tables Icon

Table 2 Compression Results of a 1-ps Sixth-Order Soliton without RSS and TOD, with both RSS and TOD, and with RSS only, where the Effective Amplification of the Loop is Geff = 3

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

i uξ+12 p(ξ) 2uτ2+|u|2u+iΓu
=iδ 3uτ3-is τ (|u|2u)+τRu |u|2τ,
ξ=z|β2(0)|T02,τ=t-z/vgT0,p(ξ)=β2(ξ)β2(0),
δ=β36|β2(0)|T0,s=2ω0T0,
τR=TRT0,Γ=α2T02|β2(0)|.
Geff=β2(0)/β2(ξL),
u(0, τ)=A sech(Aτ),
u(ξL, τ)=Geff A exp(-2ΓξL)sech[Geff A exp(-2ΓξL)τ]×expi A28Γ [1-exp(-4ΓξL)],
u(ξL, τ)=Geff A sech(Geff Aτ)exp(iA2ξL/2).
E=2PpeakTFWHM1.763.
Fc=Geffexp(-2ΓξL),
u1(0, τ)=N sech(τ),
N2=γP0T02|β2(0)|,
u3(0, τ)=αu1(0, τ)=Nαsech(τ),
u4(0, τ)=i1-αu1(0, τ)=iN1-αsech(τ),
pedestalenergy(%)=|Etotal-Esech|Etotal×100%.
u1(0, τ)=N sech(τ)exp(-iCτ2/2),

Metrics