Abstract

Gaussian decomposition is used as a theoretical infrastructure with which Z-scan experiments are analyzed. This procedure is extended here to the interesting, from a practical point of view, case in which the laser beam used is not perfectly Gaussian. We follow a perturbative approach to obtain the far-field pattern of the beam after the beam passes through a nonlinear sample. The procedure is based on the decomposition of the electric field at the exit plane of the sample to a linear combination of Hermite–Gaussian functions. To a first-order approximation, each mode of the incident beam is decomposed to a linear combination of different-order modes that do not exceed the order of the original mode. Finally, the effects of the simultaneous presence of first and higher-order refractive nonlinearities or first-order refractive nonlinearity and nonlinear absorption are studied.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vortex Hermite–Gaussian laser beams

V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev
Opt. Lett. 40(5) 701-704 (2015)

Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method

Bing Gu, Jing Chen, Ya-Xian Fan, Jianping Ding, and Hui-Tian Wang
J. Opt. Soc. Am. B 22(12) 2651-2659 (2005)

Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum

R. Simon, N. Mukunda, and K. Sundar
J. Opt. Soc. Am. A 10(9) 2008-2016 (1993)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (73)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription