Abstract

We propose a method for microstructuring transparent materials by use of nondiffracting ultrashort pulse beams. Bulk glass arranged behind a diffractive axicon that creates a zero-order Bessel beam can be modified without being scanned in the depth direction. The whole region to be modified is irradiated by a spatially extended pulse beam; thus points at deeper depths are modified but are not affected by points at shallower depths. Not only the relationship of sample location to beam intensity field but also the pulse duration significantly influences bulk modification results. We have proved the effectiveness of method in forming microholes by applying it in silica substrates.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277–279 (2001).
    [CrossRef]
  2. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26, 19–21 (2001).
    [CrossRef]
  3. S. H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, “Observation of self-channeled plasma formation and bulk modification in optical fibers using high-intensity femtosecond laser,” Jpn. J. Appl. Phys., Part 1 37, L737–L739 (1998).
    [CrossRef]
  4. J. Durnin, “Exact solutions for nondiffracting beams,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [CrossRef]
  5. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
    [CrossRef] [PubMed]
  6. J. Amako, K. Nagasaka, and E. Fujii, “Direct laser writing of diffractive array illuminators operable at two wavelengths,” in Optical Engineering for Sensing and Nanotechnology, K. Iwata, ed., Proc. SPIE 4416, 360–363 (2001).
    [CrossRef]
  7. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase grating with arbitrary grating shape,” J. Opt. Soc. Am. A 68, 806–809 (1978).
    [CrossRef]
  8. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
    [CrossRef]
  9. D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442–1444 (1998).
    [CrossRef]
  10. A. G. Sedukhin, “Beam-preshaping axicon focusing,” J. Opt. Soc. Am. A 15, 3057–3066 (1998).
    [CrossRef]
  11. J. Amako, K. Nishida, and K. Nagasaka, “Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements,” Opt. Lett. 5, 83–85 (2002).

2002 (1)

2001 (3)

1998 (3)

S. H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, “Observation of self-channeled plasma formation and bulk modification in optical fibers using high-intensity femtosecond laser,” Jpn. J. Appl. Phys., Part 1 37, L737–L739 (1998).
[CrossRef]

A. G. Sedukhin, “Beam-preshaping axicon focusing,” J. Opt. Soc. Am. A 15, 3057–3066 (1998).
[CrossRef]

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442–1444 (1998).
[CrossRef]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

1988 (1)

1987 (1)

1978 (1)

R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase grating with arbitrary grating shape,” J. Opt. Soc. Am. A 68, 806–809 (1978).
[CrossRef]

Amako, J.

J. Amako, K. Nishida, and K. Nagasaka, “Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements,” Opt. Lett. 5, 83–85 (2002).

J. Amako, K. Nagasaka, and E. Fujii, “Direct laser writing of diffractive array illuminators operable at two wavelengths,” in Optical Engineering for Sensing and Nanotechnology, K. Iwata, ed., Proc. SPIE 4416, 360–363 (2001).
[CrossRef]

Ashkenasi, D.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442–1444 (1998).
[CrossRef]

Cambell, E. E. B.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442–1444 (1998).
[CrossRef]

Cho, S. H.

S. H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, “Observation of self-channeled plasma formation and bulk modification in optical fibers using high-intensity femtosecond laser,” Jpn. J. Appl. Phys., Part 1 37, L737–L739 (1998).
[CrossRef]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Durnin, J.

Friberg, A. T.

Fujii, E.

J. Amako, K. Nagasaka, and E. Fujii, “Direct laser writing of diffractive array illuminators operable at two wavelengths,” in Optical Engineering for Sensing and Nanotechnology, K. Iwata, ed., Proc. SPIE 4416, 360–363 (2001).
[CrossRef]

Gaylord, T. K.

R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase grating with arbitrary grating shape,” J. Opt. Soc. Am. A 68, 806–809 (1978).
[CrossRef]

Henz, S.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442–1444 (1998).
[CrossRef]

Herrmann, J.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442–1444 (1998).
[CrossRef]

Itoh, K.

Juodkazis, S.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Kumagai, H.

S. H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, “Observation of self-channeled plasma formation and bulk modification in optical fibers using high-intensity femtosecond laser,” Jpn. J. Appl. Phys., Part 1 37, L737–L739 (1998).
[CrossRef]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Magnusson, R.

R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase grating with arbitrary grating shape,” J. Opt. Soc. Am. A 68, 806–809 (1978).
[CrossRef]

Marcinkevicius, A.

Matsuo, S.

Midorikawa, K.

S. H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, “Observation of self-channeled plasma formation and bulk modification in optical fibers using high-intensity femtosecond laser,” Jpn. J. Appl. Phys., Part 1 37, L737–L739 (1998).
[CrossRef]

Misawa, H.

Miwa, M.

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Nagasaka, K.

J. Amako, K. Nishida, and K. Nagasaka, “Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements,” Opt. Lett. 5, 83–85 (2002).

J. Amako, K. Nagasaka, and E. Fujii, “Direct laser writing of diffractive array illuminators operable at two wavelengths,” in Optical Engineering for Sensing and Nanotechnology, K. Iwata, ed., Proc. SPIE 4416, 360–363 (2001).
[CrossRef]

Nishida, K.

Nishii, J.

Obara, M.

S. H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, “Observation of self-channeled plasma formation and bulk modification in optical fibers using high-intensity femtosecond laser,” Jpn. J. Appl. Phys., Part 1 37, L737–L739 (1998).
[CrossRef]

Rosenfeld, A.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442–1444 (1998).
[CrossRef]

Sedukhin, A. G.

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Toma, T.

Turunen, J.

Varel, H.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442–1444 (1998).
[CrossRef]

Vasara, A.

Watanabe, M.

Watanabe, W.

Yamada, K.

Yokota, I.

S. H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, “Observation of self-channeled plasma formation and bulk modification in optical fibers using high-intensity femtosecond laser,” Jpn. J. Appl. Phys., Part 1 37, L737–L739 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442–1444 (1998).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Durnin, “Exact solutions for nondiffracting beams,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[CrossRef]

R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase grating with arbitrary grating shape,” J. Opt. Soc. Am. A 68, 806–809 (1978).
[CrossRef]

A. G. Sedukhin, “Beam-preshaping axicon focusing,” J. Opt. Soc. Am. A 15, 3057–3066 (1998).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

S. H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, “Observation of self-channeled plasma formation and bulk modification in optical fibers using high-intensity femtosecond laser,” Jpn. J. Appl. Phys., Part 1 37, L737–L739 (1998).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

J. Amako, K. Nagasaka, and E. Fujii, “Direct laser writing of diffractive array illuminators operable at two wavelengths,” in Optical Engineering for Sensing and Nanotechnology, K. Iwata, ed., Proc. SPIE 4416, 360–363 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic layout for modifying a transparent material by use of nondiffracting ultrashort pulse beams. Inset, axial intensity profile of the nondiffracting beam.

Fig. 2
Fig. 2

Axial intensity profiles of a zero-order Bessel beam computed with expression (1).

Fig. 3
Fig. 3

Atomic-force microscope image of the relief pattern (inner part) of the diffractive axicon used for generation of a nondiffracting beam. Inset, a relief profile.

Fig. 4
Fig. 4

Bird’s-eye view of the nondiffracting beam experimentally observed with a diffractive axicon, prepared for evaluation.

Fig. 5
Fig. 5

Side view of bulk modification through a 2.5-mm-thick silica glass exposed to nondiffracting pulses of 500 fs and 0.9 mJ.

Fig. 6
Fig. 6

Cross-sectional views of the modification in Fig. 5: (a) at the entrance, (b) inside the glass, and (c) at the exit.

Fig. 7
Fig. 7

Microscopic views of a through hole obtained by chemical etching of a modified glass: (a) side view, (b), (c) cross-sectional views at entrance and exit, respectively.

Fig. 8
Fig. 8

Side views of etched holes obtained for (a) 100-fs and (b) 500-fs pulse widths. Exposures are 1, 1/4, 1/15, and 1/60 s from left to right in both (a) and (b).

Fig. 9
Fig. 9

Side views of etched holes: sample distances of (a) 1, (b) 4, (c) 6, and (b) 10 mm from the axicon during laser exposure.

Fig. 10
Fig. 10

Etched hole dimensions versus sample distance: (a) hole widths at entrance, middle, and exit and (b) roundness at entrance and exit.

Fig. 11
Fig. 11

Efficiency of light use for bulk modification plotted as a function of grating period. The filled circle marks for the example modification in Fig. 5.

Fig. 12
Fig. 12

Illustration for discussion of the effects of interference among the diffracted wave-front segments.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I(z)=C1z exp(-C2z2):C1=2πI0sin2 θ,C2=2 sin2 θ/a2,
zp=(a/2)(1/m)(d/λ),
η=(r22-r12)/a2=mλt/(ad),
ωp=[e2Ne(I)/ε0me]1/2,
I(off-axis)<I(breakdown)<I(damage)<I(on-axis),
Φ=2π|ΔL|/λ-ϕ(|Δr|),
I(z)=I0exp(-2r2/a2)rdθdr/dz=[2πrI0exp(-2r2/a2)dr]/dz=(2πI0sin2 θz)exp[-(2 sin2 θ/a2)z2],
dI(z)/dz=-2C1C2exp(-C2z2)[z+1/(2C2)1/2]×[z-1/(2C2)1/2].
zp=1/(2C2)1/2=a/(2 sin θ)=(a/2)(1/m)(d/λ).
I(z)dz=C1z exp(-C2z2)dz=C1/(2C2)=πI0a2/2,

Metrics