Abstract

A simple and efficient system for generating wavelength-tunable optical short pulses from a self-seeded, gain-switched Fabry–Perot laser diode is presented. The laser’s external cavity consists only of a tunable optical filter. The side-mode suppression ratio is better than 30 dB over a relatively wide wavelength-tuning range of 26 nm. In addition, a constant repetition frequency of 534.65 MHz can be maintained during wavelength tuning.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Vasil’ev, “Ultrashort pulse generation in diode lasers,” Opt. Quantum Electron. 24, 801–824 (1992).
    [CrossRef]
  2. I. Nitta, J. Abeles, and P. J. Delfyett, “Hybrid wavelength-division and optical time-division multiplexed multiwavelength mode-locked semiconductor laser,” Appl. Opt. 39, 6799–6805 (2000).
    [CrossRef]
  3. M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Gorbuzov, “20 nm wavelength tunable singlemode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
    [CrossRef]
  4. D. N. Wang and C. Shu, “Multiple optical paths in a self-seeding scheme for multiwavelength short pulse generation,” Appl. Phys. Lett. 71, 1305–1307 (1997).
    [CrossRef]
  5. S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio,” IEEE Photon. Technol. Lett. 12, 1441–1443 (2000).
    [CrossRef]
  6. K. Chan and C. Shu, “Electrically wavelength-tunable picosecond pulses generated from a self-seeded laser diode using a compensated dispersion-tuning approach,” IEEE Photon. Technol. Lett. 11, 1093–1095 (1999).
    [CrossRef]
  7. L. P. Barry and P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
    [CrossRef]
  8. L. P. Barry, R. F. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
    [CrossRef]
  9. A. K. Dutta, N. K. Dutta, and M. Fujiwara, WDM Technologies: Active Optical Components (Academic, San Diego, Calif., 2002), Chap. 4.
  10. G. A. Fish, “Monolithic, widely-tunable, DBR lasers,” in Optical Fiber Communication Conference, OFC, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper TuB1.
  11. T. Day, “External-cavity tunable diode lasers for network development,” in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper TuJ4.
  12. J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain-coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214–1116 (1999).
    [CrossRef]

2000 (2)

I. Nitta, J. Abeles, and P. J. Delfyett, “Hybrid wavelength-division and optical time-division multiplexed multiwavelength mode-locked semiconductor laser,” Appl. Opt. 39, 6799–6805 (2000).
[CrossRef]

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio,” IEEE Photon. Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

1999 (3)

K. Chan and C. Shu, “Electrically wavelength-tunable picosecond pulses generated from a self-seeded laser diode using a compensated dispersion-tuning approach,” IEEE Photon. Technol. Lett. 11, 1093–1095 (1999).
[CrossRef]

L. P. Barry and P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain-coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214–1116 (1999).
[CrossRef]

1997 (1)

D. N. Wang and C. Shu, “Multiple optical paths in a self-seeding scheme for multiwavelength short pulse generation,” Appl. Phys. Lett. 71, 1305–1307 (1997).
[CrossRef]

1993 (1)

L. P. Barry, R. F. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

1992 (2)

P. P. Vasil’ev, “Ultrashort pulse generation in diode lasers,” Opt. Quantum Electron. 24, 801–824 (1992).
[CrossRef]

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Gorbuzov, “20 nm wavelength tunable singlemode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Abeles, J.

Anandarajah, P.

L. P. Barry and P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

Barry, L. P.

L. P. Barry and P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

L. P. Barry, R. F. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

Bennion, I.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio,” IEEE Photon. Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

Bimberg, D.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Gorbuzov, “20 nm wavelength tunable singlemode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Boittin, R.

L. P. Barry, R. F. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

Chan, K.

K. Chan and C. Shu, “Electrically wavelength-tunable picosecond pulses generated from a self-seeded laser diode using a compensated dispersion-tuning approach,” IEEE Photon. Technol. Lett. 11, 1093–1095 (1999).
[CrossRef]

Chiang, K. S.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio,” IEEE Photon. Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

Clements, S.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain-coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214–1116 (1999).
[CrossRef]

Cyr, M.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain-coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214–1116 (1999).
[CrossRef]

Debau, J.

L. P. Barry, R. F. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

Delfyett, P. J.

Fischbeck, G.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Gorbuzov, “20 nm wavelength tunable singlemode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Gambling, W. A.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio,” IEEE Photon. Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

Goodchild, D.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain-coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214–1116 (1999).
[CrossRef]

Gorbachov, A. V.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Gorbuzov, “20 nm wavelength tunable singlemode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Gorbuzov, D. Z.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Gorbuzov, “20 nm wavelength tunable singlemode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Hong, J.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain-coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214–1116 (1999).
[CrossRef]

Huhse, D.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Gorbuzov, “20 nm wavelength tunable singlemode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Jatar, S.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain-coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214–1116 (1999).
[CrossRef]

Kim, H.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain-coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214–1116 (1999).
[CrossRef]

Li, S.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio,” IEEE Photon. Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

Liu, Y.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio,” IEEE Photon. Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

Nitta, I.

O’Dowd, R. F.

L. P. Barry, R. F. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

Rogers, C.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain-coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214–1116 (1999).
[CrossRef]

Schell, M.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Gorbuzov, “20 nm wavelength tunable singlemode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Shu, C.

K. Chan and C. Shu, “Electrically wavelength-tunable picosecond pulses generated from a self-seeded laser diode using a compensated dispersion-tuning approach,” IEEE Photon. Technol. Lett. 11, 1093–1095 (1999).
[CrossRef]

D. N. Wang and C. Shu, “Multiple optical paths in a self-seeding scheme for multiwavelength short pulse generation,” Appl. Phys. Lett. 71, 1305–1307 (1997).
[CrossRef]

Tarasov, D. S.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Gorbuzov, “20 nm wavelength tunable singlemode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Vasil’ev, P. P.

P. P. Vasil’ev, “Ultrashort pulse generation in diode lasers,” Opt. Quantum Electron. 24, 801–824 (1992).
[CrossRef]

Wang, D. N.

D. N. Wang and C. Shu, “Multiple optical paths in a self-seeding scheme for multiwavelength short pulse generation,” Appl. Phys. Lett. 71, 1305–1307 (1997).
[CrossRef]

Weber, A. G.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Gorbuzov, “20 nm wavelength tunable singlemode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Zhang, L.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio,” IEEE Photon. Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. N. Wang and C. Shu, “Multiple optical paths in a self-seeding scheme for multiwavelength short pulse generation,” Appl. Phys. Lett. 71, 1305–1307 (1997).
[CrossRef]

Electron. Lett. (1)

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Gorbuzov, “20 nm wavelength tunable singlemode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain-coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214–1116 (1999).
[CrossRef]

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio,” IEEE Photon. Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

K. Chan and C. Shu, “Electrically wavelength-tunable picosecond pulses generated from a self-seeded laser diode using a compensated dispersion-tuning approach,” IEEE Photon. Technol. Lett. 11, 1093–1095 (1999).
[CrossRef]

L. P. Barry and P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999).
[CrossRef]

L. P. Barry, R. F. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett. 5, 1132–1134 (1993).
[CrossRef]

Opt. Quantum Electron. (1)

P. P. Vasil’ev, “Ultrashort pulse generation in diode lasers,” Opt. Quantum Electron. 24, 801–824 (1992).
[CrossRef]

Other (3)

A. K. Dutta, N. K. Dutta, and M. Fujiwara, WDM Technologies: Active Optical Components (Academic, San Diego, Calif., 2002), Chap. 4.

G. A. Fish, “Monolithic, widely-tunable, DBR lasers,” in Optical Fiber Communication Conference, OFC, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper TuB1.

T. Day, “External-cavity tunable diode lasers for network development,” in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper TuJ4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental configuration of the self-seeding system.

Fig. 2
Fig. 2

Gain-switched F–P laser diode output spectrum.

Fig. 3
Fig. 3

Wavelength tunable optical short-pulse spectra at wavelengths of (a) 1523.6, (b) 1534.4, and (c) 1546.4 nm.

Fig. 4
Fig. 4

Optical pulse trains at wavelengths of (a) 1523.6, (b) 1534.4, and (c) 1546.4 nm.

Fig. 5
Fig. 5

SMSR values of the output pulses obtained at several wavelengths.

Metrics