Abstract

Deformations of horizontal liquid interfaces by optical radiation pressure are generally expected to display similar behavior, whatever the direction of propagation of the exciting laser beam is. We found that this expectation is borne out as long as the cw laser illumination is moderate in strength. However, we found that, as a striking contrast for high field strengths, either a large stable tether can be formed or a breakup of the interface can occur, depending on whether the laser beam is directed upward or downward. Physically, the reason for this asymmetry can be traced to whether total reflection can occur. We present two simple theoretical models, one based on geometrical optics, the other on wave optics, that are able to illustrate the essence of the effect. In the case leading to interface disruption our experimental results are compared with those obtained by Zhang and Chang for water droplets illuminated by intense laser pulses [Opt. Lett. 13, 916 (1988)]. A key point in our experimental investigations is to work with a near-critical liquid–liquid interface. The surface tension therefore becomes significantly reduced, which thus enhances the magnitude of the stationary deformations induced.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973).
    [CrossRef]
  2. A. V. Kats and V. M. Kontorovich, “Lens effect due to the pressure of light on the surface of a transparent liquid,” Sov. Phys. JETP 41, 346–351 (1975).
  3. I. I. Komissarova, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure-induced deformations of a free liquid surface,” Opt. Commun. 66, 15–20 (1987).
    [CrossRef]
  4. J. M. Hartings, X. Pu, J. L. Cheung, and R. K. Chang, “Laser-induced distortion for increased input coupling of light to droplet-cavity modes,” J. Opt. Soc. Am. B 14, 2842–2849 (1997).
    [CrossRef]
  5. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
    [CrossRef] [PubMed]
  6. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel tool to micromanipulate cells,” Biophys. J. 84, 767–784 (2001).
    [CrossRef]
  7. C. H. Lee, C. L. Guo, and J. Wang, “Optical measurement of the viscoelastic and biochemical responses of living cells to mechanical perturbation,” Opt. Lett. 23, 307–309 (1998).
    [CrossRef]
  8. C. H. Lee, W. C. Lin, and J. Wang, “All-optical measurements of the bending rigidity of lipid-vesicle membranes across structural phase transitions,” Phys. Rev. E 64, 020901 (2001).
    [CrossRef]
  9. K. Sakai, D. Mizuno, and K. Takagi, “Measurement of liq-uid surface properties by laser-induced surface deformation spectroscopy,” Phys. Rev. E 63, 046302 (2001).
    [CrossRef]
  10. S. Mitani and K. Sakai, “Measurement of ultralow interfacial tension with a laser interface manipulation technique,” Phys. Rev. E 66, 031604 (2002).
    [CrossRef]
  11. J. Z. Zhang and R. K. Chang, “Shape distorsion of a single water droplet by laser-induced electrostriction,” Opt. Lett. 13, 916–918 (1988).
    [CrossRef] [PubMed]
  12. I. Brevik and R. Kluge, “Oscillations of a water droplet illuminated by a linearly polarized laser pulse,” J. Opt. Soc. Am. B 16, 976–985 (1999).
    [CrossRef]
  13. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1986), p. 348.
  14. A. Casner and J. P. Delville, “Giant deformations of a liquid-liquid interface induced by optical radiation pressure,” Phys. Rev. Lett. 87, 054503 (2001).
    [CrossRef]
  15. H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6, 2430–2439 (1989).
    [CrossRef]
  16. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
    [CrossRef]
  17. A. Casner and J. P. Delville, “Adaptative lensing driven by the radiation pressure of a continuous-wave laser wave upon a near-critical liquid-liquid interface,” Opt. Lett. 26, 1418–1420 (2001).
    [CrossRef]
  18. A. Casner and J. P. Delville, “Laser-induced hydrodynamic instability of fluid interfaces,” Phys. Rev. Lett. 90, 144503 (2003).
    [CrossRef] [PubMed]
  19. G. N. Borzdov, “An intrinsic tensor technique in Minkowski space with applications to boundary value problems,” J. Math. Phys. 34, 3162–3196 (1993).
    [CrossRef]
  20. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  21. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
    [CrossRef]
  22. O. N. Ivanova, S. P. Chernov, and V. A. Shepelev, “Experimental investigation of the interaction of high-power laser radiation with the free surface of a liquid under total internal reflection conditions,” Sov. J. Quantum Electron. 4, 1161–1162 (1975).
    [CrossRef]
  23. R. V. Jones and B. Leslie, “The measurement of optical radiation pressure in dispersive media,” Proc. R. Soc. London, Ser. A 360, 347–363 (1978).
    [CrossRef]
  24. R. V. Jones, Instruments and Experiences (Wiley, New York, 1988).
  25. K. L. Poon, “Laser pulse induced electrostrictive distortion of liquid micro-droplet,” M. Phil. thesis (Chinese University of Hong Kong, Hong Kong, China, 1990).
  26. A. Casner, “Déformations, manipulations et instabilités d’interfaces liquides induites par la pression de radiation d’une onde laser,” Ph.D. dissertation (Université Bordeaux I, Bordeaux, France, 2001); http://tel.ccsd.cnrs.fr/documents/archives0/00/00/16/37/index_fr.html.

2003 (1)

A. Casner and J. P. Delville, “Laser-induced hydrodynamic instability of fluid interfaces,” Phys. Rev. Lett. 90, 144503 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Mitani and K. Sakai, “Measurement of ultralow interfacial tension with a laser interface manipulation technique,” Phys. Rev. E 66, 031604 (2002).
[CrossRef]

2001 (5)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel tool to micromanipulate cells,” Biophys. J. 84, 767–784 (2001).
[CrossRef]

C. H. Lee, W. C. Lin, and J. Wang, “All-optical measurements of the bending rigidity of lipid-vesicle membranes across structural phase transitions,” Phys. Rev. E 64, 020901 (2001).
[CrossRef]

K. Sakai, D. Mizuno, and K. Takagi, “Measurement of liq-uid surface properties by laser-induced surface deformation spectroscopy,” Phys. Rev. E 63, 046302 (2001).
[CrossRef]

A. Casner and J. P. Delville, “Giant deformations of a liquid-liquid interface induced by optical radiation pressure,” Phys. Rev. Lett. 87, 054503 (2001).
[CrossRef]

A. Casner and J. P. Delville, “Adaptative lensing driven by the radiation pressure of a continuous-wave laser wave upon a near-critical liquid-liquid interface,” Opt. Lett. 26, 1418–1420 (2001).
[CrossRef]

2000 (1)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1997 (1)

1993 (1)

G. N. Borzdov, “An intrinsic tensor technique in Minkowski space with applications to boundary value problems,” J. Math. Phys. 34, 3162–3196 (1993).
[CrossRef]

1989 (1)

1988 (2)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

J. Z. Zhang and R. K. Chang, “Shape distorsion of a single water droplet by laser-induced electrostriction,” Opt. Lett. 13, 916–918 (1988).
[CrossRef] [PubMed]

1987 (1)

I. I. Komissarova, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure-induced deformations of a free liquid surface,” Opt. Commun. 66, 15–20 (1987).
[CrossRef]

1979 (1)

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
[CrossRef]

1978 (1)

R. V. Jones and B. Leslie, “The measurement of optical radiation pressure in dispersive media,” Proc. R. Soc. London, Ser. A 360, 347–363 (1978).
[CrossRef]

1975 (2)

A. V. Kats and V. M. Kontorovich, “Lens effect due to the pressure of light on the surface of a transparent liquid,” Sov. Phys. JETP 41, 346–351 (1975).

O. N. Ivanova, S. P. Chernov, and V. A. Shepelev, “Experimental investigation of the interaction of high-power laser radiation with the free surface of a liquid under total internal reflection conditions,” Sov. J. Quantum Electron. 4, 1161–1162 (1975).
[CrossRef]

1973 (1)

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel tool to micromanipulate cells,” Biophys. J. 84, 767–784 (2001).
[CrossRef]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Borzdov, G. N.

G. N. Borzdov, “An intrinsic tensor technique in Minkowski space with applications to boundary value problems,” J. Math. Phys. 34, 3162–3196 (1993).
[CrossRef]

Brevik, I.

I. Brevik and R. Kluge, “Oscillations of a water droplet illuminated by a linearly polarized laser pulse,” J. Opt. Soc. Am. B 16, 976–985 (1999).
[CrossRef]

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
[CrossRef]

Casner, A.

A. Casner and J. P. Delville, “Laser-induced hydrodynamic instability of fluid interfaces,” Phys. Rev. Lett. 90, 144503 (2003).
[CrossRef] [PubMed]

A. Casner and J. P. Delville, “Adaptative lensing driven by the radiation pressure of a continuous-wave laser wave upon a near-critical liquid-liquid interface,” Opt. Lett. 26, 1418–1420 (2001).
[CrossRef]

A. Casner and J. P. Delville, “Giant deformations of a liquid-liquid interface induced by optical radiation pressure,” Phys. Rev. Lett. 87, 054503 (2001).
[CrossRef]

Chang, R. K.

Chernov, S. P.

O. N. Ivanova, S. P. Chernov, and V. A. Shepelev, “Experimental investigation of the interaction of high-power laser radiation with the free surface of a liquid under total internal reflection conditions,” Sov. J. Quantum Electron. 4, 1161–1162 (1975).
[CrossRef]

Cheung, J. L.

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel tool to micromanipulate cells,” Biophys. J. 84, 767–784 (2001).
[CrossRef]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Delville, J. P.

A. Casner and J. P. Delville, “Laser-induced hydrodynamic instability of fluid interfaces,” Phys. Rev. Lett. 90, 144503 (2003).
[CrossRef] [PubMed]

A. Casner and J. P. Delville, “Adaptative lensing driven by the radiation pressure of a continuous-wave laser wave upon a near-critical liquid-liquid interface,” Opt. Lett. 26, 1418–1420 (2001).
[CrossRef]

A. Casner and J. P. Delville, “Giant deformations of a liquid-liquid interface induced by optical radiation pressure,” Phys. Rev. Lett. 87, 054503 (2001).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973).
[CrossRef]

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel tool to micromanipulate cells,” Biophys. J. 84, 767–784 (2001).
[CrossRef]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Guo, C. L.

Hartings, J. M.

Ivanova, O. N.

O. N. Ivanova, S. P. Chernov, and V. A. Shepelev, “Experimental investigation of the interaction of high-power laser radiation with the free surface of a liquid under total internal reflection conditions,” Sov. J. Quantum Electron. 4, 1161–1162 (1975).
[CrossRef]

Jones, R. V.

R. V. Jones and B. Leslie, “The measurement of optical radiation pressure in dispersive media,” Proc. R. Soc. London, Ser. A 360, 347–363 (1978).
[CrossRef]

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel tool to micromanipulate cells,” Biophys. J. 84, 767–784 (2001).
[CrossRef]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Kats, A. V.

A. V. Kats and V. M. Kontorovich, “Lens effect due to the pressure of light on the surface of a transparent liquid,” Sov. Phys. JETP 41, 346–351 (1975).

Kluge, R.

Komissarova, I. I.

I. I. Komissarova, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure-induced deformations of a free liquid surface,” Opt. Commun. 66, 15–20 (1987).
[CrossRef]

Kontorovich, V. M.

A. V. Kats and V. M. Kontorovich, “Lens effect due to the pressure of light on the surface of a transparent liquid,” Sov. Phys. JETP 41, 346–351 (1975).

Lai, H. M.

Lee, C. H.

C. H. Lee, W. C. Lin, and J. Wang, “All-optical measurements of the bending rigidity of lipid-vesicle membranes across structural phase transitions,” Phys. Rev. E 64, 020901 (2001).
[CrossRef]

C. H. Lee, C. L. Guo, and J. Wang, “Optical measurement of the viscoelastic and biochemical responses of living cells to mechanical perturbation,” Opt. Lett. 23, 307–309 (1998).
[CrossRef]

Leslie, B.

R. V. Jones and B. Leslie, “The measurement of optical radiation pressure in dispersive media,” Proc. R. Soc. London, Ser. A 360, 347–363 (1978).
[CrossRef]

Leung, P. T.

Lin, W. C.

C. H. Lee, W. C. Lin, and J. Wang, “All-optical measurements of the bending rigidity of lipid-vesicle membranes across structural phase transitions,” Phys. Rev. E 64, 020901 (2001).
[CrossRef]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel tool to micromanipulate cells,” Biophys. J. 84, 767–784 (2001).
[CrossRef]

Mitani, S.

S. Mitani and K. Sakai, “Measurement of ultralow interfacial tension with a laser interface manipulation technique,” Phys. Rev. E 66, 031604 (2002).
[CrossRef]

Mizuno, D.

K. Sakai, D. Mizuno, and K. Takagi, “Measurement of liq-uid surface properties by laser-induced surface deformation spectroscopy,” Phys. Rev. E 63, 046302 (2001).
[CrossRef]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel tool to micromanipulate cells,” Biophys. J. 84, 767–784 (2001).
[CrossRef]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Ostrovskaya, G. V.

I. I. Komissarova, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure-induced deformations of a free liquid surface,” Opt. Commun. 66, 15–20 (1987).
[CrossRef]

Poon, K. L.

Pu, X.

Sakai, K.

S. Mitani and K. Sakai, “Measurement of ultralow interfacial tension with a laser interface manipulation technique,” Phys. Rev. E 66, 031604 (2002).
[CrossRef]

K. Sakai, D. Mizuno, and K. Takagi, “Measurement of liq-uid surface properties by laser-induced surface deformation spectroscopy,” Phys. Rev. E 63, 046302 (2001).
[CrossRef]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Shedova, E. N.

I. I. Komissarova, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure-induced deformations of a free liquid surface,” Opt. Commun. 66, 15–20 (1987).
[CrossRef]

Shepelev, V. A.

O. N. Ivanova, S. P. Chernov, and V. A. Shepelev, “Experimental investigation of the interaction of high-power laser radiation with the free surface of a liquid under total internal reflection conditions,” Sov. J. Quantum Electron. 4, 1161–1162 (1975).
[CrossRef]

Takagi, K.

K. Sakai, D. Mizuno, and K. Takagi, “Measurement of liq-uid surface properties by laser-induced surface deformation spectroscopy,” Phys. Rev. E 63, 046302 (2001).
[CrossRef]

Wang, J.

C. H. Lee, W. C. Lin, and J. Wang, “All-optical measurements of the bending rigidity of lipid-vesicle membranes across structural phase transitions,” Phys. Rev. E 64, 020901 (2001).
[CrossRef]

C. H. Lee, C. L. Guo, and J. Wang, “Optical measurement of the viscoelastic and biochemical responses of living cells to mechanical perturbation,” Opt. Lett. 23, 307–309 (1998).
[CrossRef]

Young, K.

Zhang, J. Z.

Biophys. J. (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel tool to micromanipulate cells,” Biophys. J. 84, 767–784 (2001).
[CrossRef]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

J. Math. Phys. (1)

G. N. Borzdov, “An intrinsic tensor technique in Minkowski space with applications to boundary value problems,” J. Math. Phys. 34, 3162–3196 (1993).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

I. I. Komissarova, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure-induced deformations of a free liquid surface,” Opt. Commun. 66, 15–20 (1987).
[CrossRef]

Opt. Lett. (3)

Phys. Rep. (1)

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
[CrossRef]

Phys. Rev. E (3)

C. H. Lee, W. C. Lin, and J. Wang, “All-optical measurements of the bending rigidity of lipid-vesicle membranes across structural phase transitions,” Phys. Rev. E 64, 020901 (2001).
[CrossRef]

K. Sakai, D. Mizuno, and K. Takagi, “Measurement of liq-uid surface properties by laser-induced surface deformation spectroscopy,” Phys. Rev. E 63, 046302 (2001).
[CrossRef]

S. Mitani and K. Sakai, “Measurement of ultralow interfacial tension with a laser interface manipulation technique,” Phys. Rev. E 66, 031604 (2002).
[CrossRef]

Phys. Rev. Lett. (4)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973).
[CrossRef]

A. Casner and J. P. Delville, “Laser-induced hydrodynamic instability of fluid interfaces,” Phys. Rev. Lett. 90, 144503 (2003).
[CrossRef] [PubMed]

A. Casner and J. P. Delville, “Giant deformations of a liquid-liquid interface induced by optical radiation pressure,” Phys. Rev. Lett. 87, 054503 (2001).
[CrossRef]

Proc. R. Soc. London, Ser. A (1)

R. V. Jones and B. Leslie, “The measurement of optical radiation pressure in dispersive media,” Proc. R. Soc. London, Ser. A 360, 347–363 (1978).
[CrossRef]

Sov. J. Quantum Electron. (1)

O. N. Ivanova, S. P. Chernov, and V. A. Shepelev, “Experimental investigation of the interaction of high-power laser radiation with the free surface of a liquid under total internal reflection conditions,” Sov. J. Quantum Electron. 4, 1161–1162 (1975).
[CrossRef]

Sov. Phys. JETP (1)

A. V. Kats and V. M. Kontorovich, “Lens effect due to the pressure of light on the surface of a transparent liquid,” Sov. Phys. JETP 41, 346–351 (1975).

Other (5)

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1986), p. 348.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

R. V. Jones, Instruments and Experiences (Wiley, New York, 1988).

K. L. Poon, “Laser pulse induced electrostrictive distortion of liquid micro-droplet,” M. Phil. thesis (Chinese University of Hong Kong, Hong Kong, China, 1990).

A. Casner, “Déformations, manipulations et instabilités d’interfaces liquides induites par la pression de radiation d’une onde laser,” Ph.D. dissertation (Université Bordeaux I, Bordeaux, France, 2001); http://tel.ccsd.cnrs.fr/documents/archives0/00/00/16/37/index_fr.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: BS, beam splitter; L, lens; M1–M3, dielectric mirrors; λ/2, half-wave plate; C, thermoregulated spectroscopic cell.

Fig. 2
Fig. 2

Interface deformations induced at (T-TC)=3 K by a laser beam of waist ω0=5.3 μm. (a) Laser propagating upward from Φ1 to Φ2 as indicated by the white arrow. P increases from top to bottom and is successively equal to 210, 270, 300, 410, 530, 590, and 830 mW. (b) Downward direction of propagation. P=190, 250, 280, 310, 340, 370, 400, and 400 mW from top to bottom. The two bottommost pictures are snapshots that show the destabilization of the interface at PS leading to the formation of a stationary jet similar to that illustrated in (c) for (T-TC)=6 K, ω0=3.5 μm, and P=700 mW. PS=490 mW in the last case. The total height of (c) is 1 mm.

Fig. 3
Fig. 3

Evolution of the center-line height of deformation h0=h(r=0) versus P corresponding to Figs. 2(a) (filled triangles) and 2(b) (open triangles). The dashed line indicates the onset of PS above which the interface becomes unstable when the laser is propagating downward.

Fig. 4
Fig. 4

Schematic sketch of a symmetric ray track when the beam is incident from above. Angle of incidence, θ2=β=45°; n2/n1=2.

Fig. 5
Fig. 5

Normalized radiation pressure on a flat surface versus angle of incidence θ1 for TM and TE polarization when T-TC=3 K, as in our experiment. The light ray is incident from Φ1 to Φ2. Inset, the same curves drawn for an air–water interface; the ray is incident from air (n1=1) to water (n2=1.33).

Fig. 6
Fig. 6

Same as in Fig. 5 but with the direction of the ray reversed from Φ2 to Φ1 or (inset) from water to air. The angle of incidence is now denoted θ2.

Tables (1)

Tables Icon

Table 1 Experimental Parameters of our Medium a

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

(ρ1-ρ2)gh(r)-σ 1rddrrh(r)[1+h(r)2]1/2=Π(r),
PS=1.121π0.7152n1n21+n1n2σcn2-n1 ω0,
α=2πa/λ0.
Π(θi)=niIccos2 θi1+R-tan θitan θt T,
Π¯z()=n2Ic.
Π¯z()=0.359n1Ic.
Π¯z()Π¯z()4,
E(i)=E0exexp(ik1z),B(i)=n1E0ceyexp(ik1z),
Er(w)(a)=E0cos ϕ(k2a)2l=1il+1(2l+1)al(w)ψl(k2a)Pl1,
Eθ(w)(a)=-E0cos ϕk2al=1il(2l+1)l(l+1)×bl(w)ψl(k2a) Pl1sin θ-ial(w)ψl(k2a) dPl1dθ,
Eϕ(w)(a)=E0sin ϕk2al=1il(2l+1)l(l+1)×bl(w)ψl(k2a) dPl1dθ-ial(w)ψl(k2a) Pl1sin θ,
Π(θ, ϕ)=02 (n22-n12)Et(w)2+n22n12 Er(w)2a-,
Π(θ, ϕ)=02 (n22-n12)E02l=0m=-llFlm×Plm(cos θ)exp(imϕ),
I(r)=2Pπω02exp(-2r2/ω02),T(t)=tτexp(-t/τ).
f=-12 E2+12 E2ρ ddρ,
f=-02 E2κ+06 [E2(κ-1)(κ+2)],

Metrics