Abstract

We propose a new asymmetric drive scheme for vertical-cavity surface-emitting lasers (VCSELs) that is expected to permit the active compensation of misalignment between laser beam and waveguide. Simulations performed with a VCSEL integrated spatiotemporal advanced simulator simulation tool indicate that driving the laser with two orthogonal, individually addressable contacts may improve coupling efficiency by selective excitation of modes with given azimuthal distributions. Besides improved and more-stable coupling efficiency, significantly lower noise levels that result from reduced mode partition noise are observed, which significantly enhance the performance of digital transmission systems. Such electronic beam shaping from the driver side may drastically reduce the system’s costs by relaxing its fabrication tolerances.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Eitel, S. J. Fancey, H. P. Gaugel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photonics Technol. Lett. 12, 459–461 (2000).
    [CrossRef]
  2. R. Agnew, “Fast measuring system boosts VCSEL testing,” Europhotonics 7(3), 38–40 (2002).
  3. G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current verical-cavity surface-emitting lasers obained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
    [CrossRef]
  4. R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, and K. J. Ebeling, “High-bit-rate data transmission with short wavelength oxidized VCSELs: toward bias-free operation,” IEEE J. Sel. Top. Quantum Electron. 3, 396–404 (1997).
    [CrossRef]
  5. J. Heinrich, E. Zeeb, and K. Ebeling, “Butt-coupling efficiency of VCSEL’s into multimode fibers,” IEEE Photon. Technol. Lett. 9, 1555–1557 (1997).
    [CrossRef]
  6. M. Jungo, D. Erni, and W. Baechtold, “VISTAS: a comprehensive system-oriented spatiotemporal 2D VCSEL model,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  7. A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
    [CrossRef]
  8. J. Y. Law, “Mode-partition noise in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 437–439 (1997).
    [CrossRef]
  9. Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944–954 (1999).
    [CrossRef]
  10. S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139–2147 (1996).
    [CrossRef]
  11. J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity vertical cavity surface-emitting lasers including multiple-reflection effects,” J. Opt. Soc. Am. B 16, 2131–2139 (1999).
    [CrossRef]
  12. R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587–596 (1996).
    [CrossRef]
  13. J. Mulet and S. Balle, “Transverse mode dynamics in VCSELs: spatio-temporal vs. modal expansion descriptions,” Phys. Rev. A 66, 053802 (2002).
    [CrossRef]
  14. A. Valle, “Selection and modulation of high-order transverse modes in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34, 1924–1932 (1998).
    [CrossRef]
  15. J. Dellunde, M. C. Torrent, J. M. Sancho, and K. A. Shore, “Statistics of transverse mode turn-on dynamics in VCSEL’s,” IEEE J. Quantum Electron. 33, 1197–1204 (1997).
    [CrossRef]
  16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C—The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, 1997), p. 965.
  17. M. Jungo, D. Erni, and W. Baechtold, “Quasi-analytic steady-state solution of VCSEL rate equations including spatial hole burning and carrier diffusion losses,” Int. J. Numer. Modelling 16(2), 143–159 (2003).
    [CrossRef]
  18. T. Christen, S. Odermatt, M. Jungo, D. Erni, and W. Baechtold, “Verilog—an implementation of an efficient spatiotemporal VCSEL model for system optimizations,” Microwave Opt. Technol. Lett. (to be published).
  19. M. Jungo, “Spatiotemporal vertical-cavity surface-emitting laser model for advanced simulations of optical links,” Ph.D dissertation 14982 (Swiss Federal Institute of Technology, Zurich, Switerland, 2003).
  20. From M. Jungo; check “VISTAS” at http://sourceforge.net.
  21. R. E. Wagner and W. J. Tomlinson, “Coupling efficiency of optics in single-mode fiber components,” Appl. Opt. 21, 2671–2688 (1982).
    [CrossRef] [PubMed]
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed., Electrical and Computer Engineering Series (McGraw-Hill, New York, 1996), p. 441.
  23. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15, 857–867 (1998).
    [CrossRef]
  24. L. Zei, S. Ebers, J. R. Kropp, and K. Petermann, “Mode partition noise of multimode VCSEL’s due to spatial filtering,” presented at the 26th European Conference on Optical Communication, Munich, Germany, September 3–7 (2002).
  25. H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surfaceemitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
    [CrossRef]
  26. S. P. Levitan, T. P. Kurzweg, P. J. Marchand, M. A. Rempel, D. M. Chiarulli, J. A. Martinez, J. M. Bridgen, C. Fan, and F. B. McCormick, “Chatoyant: a computer-aided-design tool for free-space optoelectronic systems,” Appl. Opt. 37, 6078–6092 (1998).
    [CrossRef]
  27. W.-H. Cheng, M.-T. Sheen, C.-P. Chien, H.-L. Chang, and J.-H. Kuang, “Reduction of fiber alignment shifts in semiconductor laser module packaging,” J. Lightwave Technol. 18, 842–848 (2000).
    [CrossRef]
  28. C. F. R. Mateus, C. H. Chang, and C. J. Chang-Hasnain, “Widely tunable torsional optical filter,” IEEE Photon. Technol. Lett. 14, 819–821 (2002).
    [CrossRef]
  29. T. P. Kurzweg, S. P. Levitan, J. A. Martinez, P. J. Marchand, M. T. Shomsky, and D. M. Chiarulli, “Optical propagation methodologies for optical MEM systems,” presented at the Third International Conference on Modeling and Simulation of Microsystems, San Diego, Calif., March 27–29, 2000.
  30. M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, “Electrically steerable lasers using wide-aperture VCSELs,” IEEE Photon Technol. Lett. 13, 544–546 (2001).
    [CrossRef]
  31. L. G. Zei, S. Ebers, J. R. Kropp, and K. Petermann, “Noise performance of multimode VCSELs,” J. Lightwave Technol. 19, 884–892 (2001).
    [CrossRef]
  32. M. Jungo, D. Erni, and W. Baechtold, “2D VCSEL model for investigation of dynamic fiber coupling and spatially filtered noise,” IEEE Photon Technol. Lett. 15, 3–5 (2003).
    [CrossRef]
  33. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), p. 594.
  34. R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
    [CrossRef]
  35. M. Jungo, D. Erni, F. M. d. Sopra, and W. Baechtold, “Scaling-effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” J. Appl. Phys. 91, 5550–5557 (2002).
    [CrossRef]

2003 (2)

M. Jungo, D. Erni, and W. Baechtold, “Quasi-analytic steady-state solution of VCSEL rate equations including spatial hole burning and carrier diffusion losses,” Int. J. Numer. Modelling 16(2), 143–159 (2003).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “2D VCSEL model for investigation of dynamic fiber coupling and spatially filtered noise,” IEEE Photon Technol. Lett. 15, 3–5 (2003).
[CrossRef]

2002 (4)

M. Jungo, D. Erni, F. M. d. Sopra, and W. Baechtold, “Scaling-effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” J. Appl. Phys. 91, 5550–5557 (2002).
[CrossRef]

C. F. R. Mateus, C. H. Chang, and C. J. Chang-Hasnain, “Widely tunable torsional optical filter,” IEEE Photon. Technol. Lett. 14, 819–821 (2002).
[CrossRef]

J. Mulet and S. Balle, “Transverse mode dynamics in VCSELs: spatio-temporal vs. modal expansion descriptions,” Phys. Rev. A 66, 053802 (2002).
[CrossRef]

R. Agnew, “Fast measuring system boosts VCSEL testing,” Europhotonics 7(3), 38–40 (2002).

2001 (2)

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, “Electrically steerable lasers using wide-aperture VCSELs,” IEEE Photon Technol. Lett. 13, 544–546 (2001).
[CrossRef]

L. G. Zei, S. Ebers, J. R. Kropp, and K. Petermann, “Noise performance of multimode VCSELs,” J. Lightwave Technol. 19, 884–892 (2001).
[CrossRef]

2000 (2)

W.-H. Cheng, M.-T. Sheen, C.-P. Chien, H.-L. Chang, and J.-H. Kuang, “Reduction of fiber alignment shifts in semiconductor laser module packaging,” J. Lightwave Technol. 18, 842–848 (2000).
[CrossRef]

S. Eitel, S. J. Fancey, H. P. Gaugel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photonics Technol. Lett. 12, 459–461 (2000).
[CrossRef]

1999 (3)

Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944–954 (1999).
[CrossRef]

J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity vertical cavity surface-emitting lasers including multiple-reflection effects,” J. Opt. Soc. Am. B 16, 2131–2139 (1999).
[CrossRef]

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surfaceemitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[CrossRef]

1998 (3)

1997 (4)

J. Dellunde, M. C. Torrent, J. M. Sancho, and K. A. Shore, “Statistics of transverse mode turn-on dynamics in VCSEL’s,” IEEE J. Quantum Electron. 33, 1197–1204 (1997).
[CrossRef]

J. Y. Law, “Mode-partition noise in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 437–439 (1997).
[CrossRef]

R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, and K. J. Ebeling, “High-bit-rate data transmission with short wavelength oxidized VCSELs: toward bias-free operation,” IEEE J. Sel. Top. Quantum Electron. 3, 396–404 (1997).
[CrossRef]

J. Heinrich, E. Zeeb, and K. Ebeling, “Butt-coupling efficiency of VCSEL’s into multimode fibers,” IEEE Photon. Technol. Lett. 9, 1555–1557 (1997).
[CrossRef]

1996 (2)

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139–2147 (1996).
[CrossRef]

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587–596 (1996).
[CrossRef]

1995 (2)

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current verical-cavity surface-emitting lasers obained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[CrossRef]

1987 (1)

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[CrossRef]

1982 (1)

Agnew, R.

R. Agnew, “Fast measuring system boosts VCSEL testing,” Europhotonics 7(3), 38–40 (2002).

Allerman, A. A.

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, “Electrically steerable lasers using wide-aperture VCSELs,” IEEE Photon Technol. Lett. 13, 544–546 (2001).
[CrossRef]

Baechtold, W.

M. Jungo, D. Erni, and W. Baechtold, “2D VCSEL model for investigation of dynamic fiber coupling and spatially filtered noise,” IEEE Photon Technol. Lett. 15, 3–5 (2003).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “Quasi-analytic steady-state solution of VCSEL rate equations including spatial hole burning and carrier diffusion losses,” Int. J. Numer. Modelling 16(2), 143–159 (2003).
[CrossRef]

M. Jungo, D. Erni, F. M. d. Sopra, and W. Baechtold, “Scaling-effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” J. Appl. Phys. 91, 5550–5557 (2002).
[CrossRef]

S. Eitel, S. J. Fancey, H. P. Gaugel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photonics Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Balle, S.

J. Mulet and S. Balle, “Transverse mode dynamics in VCSELs: spatio-temporal vs. modal expansion descriptions,” Phys. Rev. A 66, 053802 (2002).
[CrossRef]

Bengtsson, J.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surfaceemitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[CrossRef]

Bridgen, J. M.

Chang, C. H.

C. F. R. Mateus, C. H. Chang, and C. J. Chang-Hasnain, “Widely tunable torsional optical filter,” IEEE Photon. Technol. Lett. 14, 819–821 (2002).
[CrossRef]

Chang, H.-L.

Chang-Hasnain, C. J.

C. F. R. Mateus, C. H. Chang, and C. J. Chang-Hasnain, “Widely tunable torsional optical filter,” IEEE Photon. Technol. Lett. 14, 819–821 (2002).
[CrossRef]

Cheng, W.-H.

Chiarulli, D. M.

Chien, C.-P.

Choquette, K. D.

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, “Electrically steerable lasers using wide-aperture VCSELs,” IEEE Photon Technol. Lett. 13, 544–546 (2001).
[CrossRef]

Cohen, M. I.

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, “Electrically steerable lasers using wide-aperture VCSELs,” IEEE Photon Technol. Lett. 13, 544–546 (2001).
[CrossRef]

d. Sopra, F. M.

M. Jungo, D. Erni, F. M. d. Sopra, and W. Baechtold, “Scaling-effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” J. Appl. Phys. 91, 5550–5557 (2002).
[CrossRef]

Dapkus, P. D.

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current verical-cavity surface-emitting lasers obained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[CrossRef]

Delen, N.

Dellunde, J.

Ebeling, K.

J. Heinrich, E. Zeeb, and K. Ebeling, “Butt-coupling efficiency of VCSEL’s into multimode fibers,” IEEE Photon. Technol. Lett. 9, 1555–1557 (1997).
[CrossRef]

Ebeling, K. J.

R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, and K. J. Ebeling, “High-bit-rate data transmission with short wavelength oxidized VCSELs: toward bias-free operation,” IEEE J. Sel. Top. Quantum Electron. 3, 396–404 (1997).
[CrossRef]

Ebers, S.

Eitel, S.

S. Eitel, S. J. Fancey, H. P. Gaugel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photonics Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Erni, D.

M. Jungo, D. Erni, and W. Baechtold, “Quasi-analytic steady-state solution of VCSEL rate equations including spatial hole burning and carrier diffusion losses,” Int. J. Numer. Modelling 16(2), 143–159 (2003).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “2D VCSEL model for investigation of dynamic fiber coupling and spatially filtered noise,” IEEE Photon Technol. Lett. 15, 3–5 (2003).
[CrossRef]

M. Jungo, D. Erni, F. M. d. Sopra, and W. Baechtold, “Scaling-effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” J. Appl. Phys. 91, 5550–5557 (2002).
[CrossRef]

Fan, C.

Fancey, S. J.

S. Eitel, S. J. Fancey, H. P. Gaugel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photonics Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Fiedler, U.

R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, and K. J. Ebeling, “High-bit-rate data transmission with short wavelength oxidized VCSELs: toward bias-free operation,” IEEE J. Sel. Top. Quantum Electron. 3, 396–404 (1997).
[CrossRef]

Gaugel, H. P.

S. Eitel, S. J. Fancey, H. P. Gaugel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photonics Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Ghisoni, M.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surfaceemitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[CrossRef]

Gulden, K. H.

S. Eitel, S. J. Fancey, H. P. Gaugel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photonics Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Heinrich, J.

J. Heinrich, E. Zeeb, and K. Ebeling, “Butt-coupling efficiency of VCSEL’s into multimode fibers,” IEEE Photon. Technol. Lett. 9, 1555–1557 (1997).
[CrossRef]

Hill, P.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[CrossRef]

Hooker, B.

Jagadish, C.

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, “Electrically steerable lasers using wide-aperture VCSELs,” IEEE Photon Technol. Lett. 13, 544–546 (2001).
[CrossRef]

Jungo, M.

M. Jungo, D. Erni, and W. Baechtold, “2D VCSEL model for investigation of dynamic fiber coupling and spatially filtered noise,” IEEE Photon Technol. Lett. 15, 3–5 (2003).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “Quasi-analytic steady-state solution of VCSEL rate equations including spatial hole burning and carrier diffusion losses,” Int. J. Numer. Modelling 16(2), 143–159 (2003).
[CrossRef]

M. Jungo, D. Erni, F. M. d. Sopra, and W. Baechtold, “Scaling-effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” J. Appl. Phys. 91, 5550–5557 (2002).
[CrossRef]

Klehr, A.

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587–596 (1996).
[CrossRef]

Kropp, J. R.

Kuang, J.-H.

Kurzweg, T. P.

Lanzisera, V.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[CrossRef]

Larsson, A.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surfaceemitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[CrossRef]

Law, J. Y.

J. Y. Law, “Mode-partition noise in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 437–439 (1997).
[CrossRef]

Levitan, S. P.

Li, E. H.

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139–2147 (1996).
[CrossRef]

MacDougal, M. H.

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current verical-cavity surface-emitting lasers obained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[CrossRef]

Marchand, P. J.

Martinez, J. A.

Martinsson, H.

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surfaceemitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[CrossRef]

Mateus, C. F. R.

C. F. R. Mateus, C. H. Chang, and C. J. Chang-Hasnain, “Widely tunable torsional optical filter,” IEEE Photon. Technol. Lett. 14, 819–821 (2002).
[CrossRef]

McCormick, F. B.

Michalzik, R.

R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, and K. J. Ebeling, “High-bit-rate data transmission with short wavelength oxidized VCSELs: toward bias-free operation,” IEEE J. Sel. Top. Quantum Electron. 3, 396–404 (1997).
[CrossRef]

Mueller, R.

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587–596 (1996).
[CrossRef]

Mulet, J.

J. Mulet and S. Balle, “Transverse mode dynamics in VCSELs: spatio-temporal vs. modal expansion descriptions,” Phys. Rev. A 66, 053802 (2002).
[CrossRef]

Olshansky, R.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[CrossRef]

Orenstein, M.

Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944–954 (1999).
[CrossRef]

Pesquera, L.

Petermann, K.

Powazinik, W.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[CrossRef]

Rempel, M. A.

Sancho, J. M.

J. Dellunde, M. C. Torrent, J. M. Sancho, and K. A. Shore, “Statistics of transverse mode turn-on dynamics in VCSEL’s,” IEEE J. Quantum Electron. 33, 1197–1204 (1997).
[CrossRef]

Sarma, J.

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587–596 (1996).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

Satuby, Y.

Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944–954 (1999).
[CrossRef]

Schnitzer, P.

R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, and K. J. Ebeling, “High-bit-rate data transmission with short wavelength oxidized VCSELs: toward bias-free operation,” IEEE J. Sel. Top. Quantum Electron. 3, 396–404 (1997).
[CrossRef]

Sheen, M.-T.

Shore, K. A.

J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity vertical cavity surface-emitting lasers including multiple-reflection effects,” J. Opt. Soc. Am. B 16, 2131–2139 (1999).
[CrossRef]

J. Dellunde, M. C. Torrent, J. M. Sancho, and K. A. Shore, “Statistics of transverse mode turn-on dynamics in VCSEL’s,” IEEE J. Quantum Electron. 33, 1197–1204 (1997).
[CrossRef]

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587–596 (1996).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

Shum, P.

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139–2147 (1996).
[CrossRef]

Taghizadeh, M. R.

S. Eitel, S. J. Fancey, H. P. Gaugel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photonics Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Tomlinson, W. J.

Torrent, M. C.

J. Dellunde, M. C. Torrent, J. M. Sancho, and K. A. Shore, “Statistics of transverse mode turn-on dynamics in VCSEL’s,” IEEE J. Quantum Electron. 33, 1197–1204 (1997).
[CrossRef]

Valle, A.

J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity vertical cavity surface-emitting lasers including multiple-reflection effects,” J. Opt. Soc. Am. B 16, 2131–2139 (1999).
[CrossRef]

A. Valle, “Selection and modulation of high-order transverse modes in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34, 1924–1932 (1998).
[CrossRef]

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587–596 (1996).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

Wagner, R. E.

Wiedenmann, D.

R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, and K. J. Ebeling, “High-bit-rate data transmission with short wavelength oxidized VCSELs: toward bias-free operation,” IEEE J. Sel. Top. Quantum Electron. 3, 396–404 (1997).
[CrossRef]

Wong, W. N.

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139–2147 (1996).
[CrossRef]

Yang, G. M.

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current verical-cavity surface-emitting lasers obained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[CrossRef]

Yu, S. F.

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139–2147 (1996).
[CrossRef]

Zeeb, E.

J. Heinrich, E. Zeeb, and K. Ebeling, “Butt-coupling efficiency of VCSEL’s into multimode fibers,” IEEE Photon. Technol. Lett. 9, 1555–1557 (1997).
[CrossRef]

Zei, L. G.

Appl. Opt. (2)

Electron. Lett. (1)

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current verical-cavity surface-emitting lasers obained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[CrossRef]

Europhotonics (1)

R. Agnew, “Fast measuring system boosts VCSEL testing,” Europhotonics 7(3), 38–40 (2002).

IEEE J. Quantum Electron. (6)

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944–954 (1999).
[CrossRef]

S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139–2147 (1996).
[CrossRef]

A. Valle, “Selection and modulation of high-order transverse modes in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34, 1924–1932 (1998).
[CrossRef]

J. Dellunde, M. C. Torrent, J. M. Sancho, and K. A. Shore, “Statistics of transverse mode turn-on dynamics in VCSEL’s,” IEEE J. Quantum Electron. 33, 1197–1204 (1997).
[CrossRef]

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, and K. J. Ebeling, “High-bit-rate data transmission with short wavelength oxidized VCSELs: toward bias-free operation,” IEEE J. Sel. Top. Quantum Electron. 3, 396–404 (1997).
[CrossRef]

IEEE Photon Technol. Lett. (2)

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, “Electrically steerable lasers using wide-aperture VCSELs,” IEEE Photon Technol. Lett. 13, 544–546 (2001).
[CrossRef]

M. Jungo, D. Erni, and W. Baechtold, “2D VCSEL model for investigation of dynamic fiber coupling and spatially filtered noise,” IEEE Photon Technol. Lett. 15, 3–5 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

C. F. R. Mateus, C. H. Chang, and C. J. Chang-Hasnain, “Widely tunable torsional optical filter,” IEEE Photon. Technol. Lett. 14, 819–821 (2002).
[CrossRef]

H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surfaceemitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).
[CrossRef]

J. Heinrich, E. Zeeb, and K. Ebeling, “Butt-coupling efficiency of VCSEL’s into multimode fibers,” IEEE Photon. Technol. Lett. 9, 1555–1557 (1997).
[CrossRef]

J. Y. Law, “Mode-partition noise in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 437–439 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. Eitel, S. J. Fancey, H. P. Gaugel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photonics Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Int. J. Numer. Modelling (1)

M. Jungo, D. Erni, and W. Baechtold, “Quasi-analytic steady-state solution of VCSEL rate equations including spatial hole burning and carrier diffusion losses,” Int. J. Numer. Modelling 16(2), 143–159 (2003).
[CrossRef]

J. Appl. Phys. (1)

M. Jungo, D. Erni, F. M. d. Sopra, and W. Baechtold, “Scaling-effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” J. Appl. Phys. 91, 5550–5557 (2002).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Phys. Rev. A (1)

J. Mulet and S. Balle, “Transverse mode dynamics in VCSELs: spatio-temporal vs. modal expansion descriptions,” Phys. Rev. A 66, 053802 (2002).
[CrossRef]

Semicond. Sci. Technol. (1)

R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587–596 (1996).
[CrossRef]

Other (9)

T. Christen, S. Odermatt, M. Jungo, D. Erni, and W. Baechtold, “Verilog—an implementation of an efficient spatiotemporal VCSEL model for system optimizations,” Microwave Opt. Technol. Lett. (to be published).

M. Jungo, “Spatiotemporal vertical-cavity surface-emitting laser model for advanced simulations of optical links,” Ph.D dissertation 14982 (Swiss Federal Institute of Technology, Zurich, Switerland, 2003).

From M. Jungo; check “VISTAS” at http://sourceforge.net.

M. Jungo, D. Erni, and W. Baechtold, “VISTAS: a comprehensive system-oriented spatiotemporal 2D VCSEL model,” IEEE J. Sel. Top. Quantum Electron. (to be published).

L. Zei, S. Ebers, J. R. Kropp, and K. Petermann, “Mode partition noise of multimode VCSEL’s due to spatial filtering,” presented at the 26th European Conference on Optical Communication, Munich, Germany, September 3–7 (2002).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C—The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, 1997), p. 965.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed., Electrical and Computer Engineering Series (McGraw-Hill, New York, 1996), p. 441.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), p. 594.

T. P. Kurzweg, S. P. Levitan, J. A. Martinez, P. J. Marchand, M. T. Shomsky, and D. M. Chiarulli, “Optical propagation methodologies for optical MEM systems,” presented at the Third International Conference on Modeling and Simulation of Microsystems, San Diego, Calif., March 27–29, 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Multimode optical intensity profile (left) and corresponding carrier density distribution (center) in the active region. Two-dimensional spatial hole burning is evident. The far-field profile (right) is readily computed from standard diffraction theory and permits the effects related to waveguide coupling and spatial filtering to be investigated.

Fig. 2
Fig. 2

Simulated optical response to a rectangular current pulse applied from t=0 to t=2.5 ns. The near-field intensity pattern consists of 12 modes. The losses of LP21 are set 3% lower than for the other modes.

Fig. 3
Fig. 3

Misaligned fiber coupling efficiency (bottom right) computed as the cross correlation of a 2D step function describing the waveguide geometry (bottom left) and the far-field intensity (top right) obtained by transformation of the near-field profile (top left). Note that the variables in the figure at the lower right are the relative misalignment components (Δx, Δy), not the absolute position (x, y).

Fig. 4
Fig. 4

Flow chart for computing relative intensity noise (RIN) spectra for misaligned profiles. The time-domain modal powers are multiplied by their coupling efficiencies, each with regard to a misaligned position (Δx, Δy), and are then Fourier transformed.

Fig. 5
Fig. 5

Schematic description of the proposed method for enhancing fiber coupling efficiency. (a) Common drive scheme with a ring contact and resultant degenerate doughnut-shaped far-field profiles in both the on and the off states. (b) Intensity distributions obtained with the asymmetric drive scheme. The overlap between fiber core inside the white circle and far-field profiles appears clearly enhanced for the asymmetric drive scheme.

Fig. 6
Fig. 6

Injected current and near-field profiles for (a) the symmetric and (b) the asymmetric drive schemes.

Fig. 7
Fig. 7

Eye diagrams at 12.5 Gbits/s obtained with (a) the symmetric and (b) the asymmetric drive schemes, with a misalignment Δx=15 μm between the laser beam and the optical fiber.

Fig. 8
Fig. 8

Temporal evolution of the insertion losses (bottom) for the symmetric and the asymmetric drive schemes; enhanced coupling efficiency is evident. Top, the corresponding time-domain response.

Fig. 9
Fig. 9

RIN spectra of both drive schemes. RIN spectrum for asymmetric drive scheme exhibits a significantly lower noise level over the entire range of interest (0–13 GHz). Of particular importance is the drastically lower RIN level at low frequencies in the misaligned profiles, which indicates reduced mode partition noise.

Tables (1)

Tables Icon

Table 1 Rate-Equation Parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N(r, t)t=ηij(r, t)eV-N(r, t)τN+DN2N(r, t)-νgmGm(r, t)Sm(t),
dSm(t)dt=ΓmβmN(r, t)drπR2τN+ΓmνgSm(t)πR2Gm(r, t)dr-Sm(t)τSm.
Gm(r, t)=g0N(r, t)-Ntr1+mSm(t) |ψm(r, t)|2.
Sm(ρ, φ, t)=[Smc(t)cos2(lφ)+Sms(t)sin2(lφ)]|ψm(ρ)|2.
N(ρ, φ, t)=iNt(φ, t)J0γiρR=iJ0γiρRq[Niqc(t)cos(qφ)+Niqs(t)sin(qφ)].
N(r,t)t=+DN2N(r,t)carrier diffusion-         {dNiqs(t)dt=jdijqNjqscarrier diffusion-dNiqs(t)dt=,dSmc(t)dt=+ΓmνgSmc(t)πRGm(r,t)drstimulated emission+dSmc(t)dt=+Γmνg2je0jmhfk0l,ccNjkc-e00mf00l,ccNtr1+ɛSmcSmcstimulated emission.
Sm(ρ, φ, t)=Smc(t)|ψmc(ρ)|2cos2(lφ)+Sms(t)|ψms(ρ)|2sin2(lφ)=Sm0(t)|ψm(ρ)|2[cos2(lφ)+sin2(lφ)]=Sm0(t)|ψm(ρ)|2.
ωR2ΓνgaNSτS,
γ=KfR2+γ0.

Metrics