Abstract

We investigate in detail the interferometric nature of the signal delivered by an apertureless scanning near-field optical microscope (SNOM). This nature is first brought to the fore by near-field images of an integrated waveguide. The detection process of an evanescent wave generated by total internal reflection is then studied by both lateral near-field scans and signal detection as a function of the tip-to-sample distance. This study permits interpretation of fringe patterns appearing in apertureless SNOM images and provides important information about the nature of the signal. In particular, both experimental data and simple calculations show that, because of interference with background light coming from the sample, the detected signal can describe the complex field amplitude, or the field intensity, or a subtle mix of both, depending on the tip environment and the tip position.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Courjon and C. Bainier, eds., Le Champ Proche Optique. Théorie et applications (Springer-Verlag France and France Télécom R&D, Paris, 2001).
  2. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
    [CrossRef] [PubMed]
  3. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
    [CrossRef]
  4. R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
    [CrossRef] [PubMed]
  5. R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Scanning probe optical microscopy of evanescent fields,” Rev. Sci. Instrum. 69, 2981–2987 (1998).
    [CrossRef]
  6. G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J.: Appl. Phys. 5, 269–275 (1999).
  7. R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. (Oxford) 202, 77–83 (2000).
    [CrossRef]
  8. R. Hillenbrandt, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
    [CrossRef]
  9. E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [CrossRef]
  10. J. Azoulay, A. Debarre, A. Richard, and P. Tchénio, “Optical contrast in apertureless microscopy,” Appl. Opt. 39, 129–134 (2000).
    [CrossRef]
  11. R. Bachelot, P. Gleyzes, and A. C. Boccara, “Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip,” Appl. Opt. 36, 2160–2170 (1997).
    [CrossRef] [PubMed]
  12. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
    [CrossRef]
  13. G. Wurtz, R. Bachelot, and P. Royer, “A reflection-mode apertureless scanning near-field optical microscope developed from a commercial scanning probe microscope,” Rev. Sci. Instrum. 69, 1735–1743 (1998).
    [CrossRef]
  14. R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Bent-fiber near-field scanning optical microscopy probes for use with commercial atomic-force microscopes,” in Micromachining and Imaging, T. A. Michalske and M. A. Wendman, eds., Proc. SPIE 3009, 119–129 (1997).
    [CrossRef]
  15. M. L. M. Balistreri, J. P. Korterik, G. J. Veldhuis, L. Kuipers, and N. F. Van Hust, “Quantitative photo tunneling and shear force microscopy of planar wave guide splitters and mixers,” J. Appl. Phys. 89, 3307–3314 (2001).
    [CrossRef]
  16. A. G. Ghoo, H. E. Jackson, U. Thiel, G. N. D. Brababder, and J. T. Boyd, “Near-field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
    [CrossRef]
  17. S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin, and V. Minier, “Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,” J. Microsc. (Oxford) 209, 155–161 (2003).
    [CrossRef]
  18. G. H. Vander Rhodes, B. B. Glodberg, M. S. Unlu, S. T. Chu, W. Pa, T. Kanako, K. Kokobun, and B. E. Little, “Measurement of optical spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett. 75, 2368–2370 (1999).
    [CrossRef]
  19. L. Dhar, H. J. Lee, E. J. Laskowski, S. K. Buratto, C. Narayanan, H. M. Presby, C. C. Bahr, P. J. Anthony, and M. J. Cardillo, “Refractive index profiling of planar optical waveguides using near-field scanning optical microscopy,” in Optical Fiber Communication Conference, Vol. 2 of 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 120–123.
  20. J.-E. Broquin, “Ion exchange integrated devices,” in Integrated Optics Devices V, G. C. Righini and S. Honkanen, eds., Proc. SPIE 4277, 105–115 (2001).
    [CrossRef]
  21. C. J. Koester, “Interference microscopy: theory and techniques,” in The Encyclopedia of Microscopy, G. L. Clark, ed. (Reinhold, New York, 1961), pp. 420–434.
  22. R. Laddada, S. Benrezzak, P. M. Adam, G. Viardot, J. L. Bijeon, and P. Royer, “Detection of an evanescent field scattered by silicon tips in an apertureless scanning near-field optical microscope,” Eur. Phys. J.: Appl. Phys. 6, 171–178 (1999).
  23. J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
    [CrossRef]

2003 (1)

S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin, and V. Minier, “Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,” J. Microsc. (Oxford) 209, 155–161 (2003).
[CrossRef]

2002 (1)

R. Hillenbrandt, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef]

2001 (3)

J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
[CrossRef]

J.-E. Broquin, “Ion exchange integrated devices,” in Integrated Optics Devices V, G. C. Righini and S. Honkanen, eds., Proc. SPIE 4277, 105–115 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, G. J. Veldhuis, L. Kuipers, and N. F. Van Hust, “Quantitative photo tunneling and shear force microscopy of planar wave guide splitters and mixers,” J. Appl. Phys. 89, 3307–3314 (2001).
[CrossRef]

2000 (2)

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. (Oxford) 202, 77–83 (2000).
[CrossRef]

J. Azoulay, A. Debarre, A. Richard, and P. Tchénio, “Optical contrast in apertureless microscopy,” Appl. Opt. 39, 129–134 (2000).
[CrossRef]

1999 (5)

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J.: Appl. Phys. 5, 269–275 (1999).

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

R. Laddada, S. Benrezzak, P. M. Adam, G. Viardot, J. L. Bijeon, and P. Royer, “Detection of an evanescent field scattered by silicon tips in an apertureless scanning near-field optical microscope,” Eur. Phys. J.: Appl. Phys. 6, 171–178 (1999).

G. H. Vander Rhodes, B. B. Glodberg, M. S. Unlu, S. T. Chu, W. Pa, T. Kanako, K. Kokobun, and B. E. Little, “Measurement of optical spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett. 75, 2368–2370 (1999).
[CrossRef]

1998 (2)

G. Wurtz, R. Bachelot, and P. Royer, “A reflection-mode apertureless scanning near-field optical microscope developed from a commercial scanning probe microscope,” Rev. Sci. Instrum. 69, 1735–1743 (1998).
[CrossRef]

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Scanning probe optical microscopy of evanescent fields,” Rev. Sci. Instrum. 69, 2981–2987 (1998).
[CrossRef]

1997 (2)

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Bent-fiber near-field scanning optical microscopy probes for use with commercial atomic-force microscopes,” in Micromachining and Imaging, T. A. Michalske and M. A. Wendman, eds., Proc. SPIE 3009, 119–129 (1997).
[CrossRef]

R. Bachelot, P. Gleyzes, and A. C. Boccara, “Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip,” Appl. Opt. 36, 2160–2170 (1997).
[CrossRef] [PubMed]

1995 (1)

1994 (3)

A. G. Ghoo, H. E. Jackson, U. Thiel, G. N. D. Brababder, and J. T. Boyd, “Near-field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[CrossRef] [PubMed]

Adam, P. M.

J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
[CrossRef]

R. Laddada, S. Benrezzak, P. M. Adam, G. Viardot, J. L. Bijeon, and P. Royer, “Detection of an evanescent field scattered by silicon tips in an apertureless scanning near-field optical microscope,” Eur. Phys. J.: Appl. Phys. 6, 171–178 (1999).

Aubert, S.

S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin, and V. Minier, “Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,” J. Microsc. (Oxford) 209, 155–161 (2003).
[CrossRef]

Azoulay, J.

Bachelot, R.

S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin, and V. Minier, “Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,” J. Microsc. (Oxford) 209, 155–161 (2003).
[CrossRef]

G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J.: Appl. Phys. 5, 269–275 (1999).

G. Wurtz, R. Bachelot, and P. Royer, “A reflection-mode apertureless scanning near-field optical microscope developed from a commercial scanning probe microscope,” Rev. Sci. Instrum. 69, 1735–1743 (1998).
[CrossRef]

R. Bachelot, P. Gleyzes, and A. C. Boccara, “Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip,” Appl. Opt. 36, 2160–2170 (1997).
[CrossRef] [PubMed]

R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
[CrossRef] [PubMed]

Balistreri, M. L. M.

M. L. M. Balistreri, J. P. Korterik, G. J. Veldhuis, L. Kuipers, and N. F. Van Hust, “Quantitative photo tunneling and shear force microscopy of planar wave guide splitters and mixers,” J. Appl. Phys. 89, 3307–3314 (2001).
[CrossRef]

Benrezzak, S.

R. Laddada, S. Benrezzak, P. M. Adam, G. Viardot, J. L. Bijeon, and P. Royer, “Detection of an evanescent field scattered by silicon tips in an apertureless scanning near-field optical microscope,” Eur. Phys. J.: Appl. Phys. 6, 171–178 (1999).

Bijeon, J. L.

R. Laddada, S. Benrezzak, P. M. Adam, G. Viardot, J. L. Bijeon, and P. Royer, “Detection of an evanescent field scattered by silicon tips in an apertureless scanning near-field optical microscope,” Eur. Phys. J.: Appl. Phys. 6, 171–178 (1999).

Bijeon, J.-L.

J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
[CrossRef]

Blaize, S.

S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin, and V. Minier, “Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,” J. Microsc. (Oxford) 209, 155–161 (2003).
[CrossRef]

Boccara, A. C.

Boyd, J. T.

A. G. Ghoo, H. E. Jackson, U. Thiel, G. N. D. Brababder, and J. T. Boyd, “Near-field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

Brababder, G. N. D.

A. G. Ghoo, H. E. Jackson, U. Thiel, G. N. D. Brababder, and J. T. Boyd, “Near-field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

Broquin, J.-E.

S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin, and V. Minier, “Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,” J. Microsc. (Oxford) 209, 155–161 (2003).
[CrossRef]

J.-E. Broquin, “Ion exchange integrated devices,” in Integrated Optics Devices V, G. C. Righini and S. Honkanen, eds., Proc. SPIE 4277, 105–115 (2001).
[CrossRef]

Bruyant, A.

S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin, and V. Minier, “Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,” J. Microsc. (Oxford) 209, 155–161 (2003).
[CrossRef]

Carminati, R.

J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
[CrossRef]

Chu, S. T.

G. H. Vander Rhodes, B. B. Glodberg, M. S. Unlu, S. T. Chu, W. Pa, T. Kanako, K. Kokobun, and B. E. Little, “Measurement of optical spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett. 75, 2368–2370 (1999).
[CrossRef]

Debarre, A.

Elings, V.

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Scanning probe optical microscopy of evanescent fields,” Rev. Sci. Instrum. 69, 2981–2987 (1998).
[CrossRef]

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Bent-fiber near-field scanning optical microscopy probes for use with commercial atomic-force microscopes,” in Micromachining and Imaging, T. A. Michalske and M. A. Wendman, eds., Proc. SPIE 3009, 119–129 (1997).
[CrossRef]

Ghoo, A. G.

A. G. Ghoo, H. E. Jackson, U. Thiel, G. N. D. Brababder, and J. T. Boyd, “Near-field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

Gleyzes, P.

Glodberg, B. B.

G. H. Vander Rhodes, B. B. Glodberg, M. S. Unlu, S. T. Chu, W. Pa, T. Kanako, K. Kokobun, and B. E. Little, “Measurement of optical spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett. 75, 2368–2370 (1999).
[CrossRef]

Greffet, J.-J.

J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
[CrossRef]

Gurley, G.

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Scanning probe optical microscopy of evanescent fields,” Rev. Sci. Instrum. 69, 2981–2987 (1998).
[CrossRef]

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Bent-fiber near-field scanning optical microscopy probes for use with commercial atomic-force microscopes,” in Micromachining and Imaging, T. A. Michalske and M. A. Wendman, eds., Proc. SPIE 3009, 119–129 (1997).
[CrossRef]

Hillenbrand, R.

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. (Oxford) 202, 77–83 (2000).
[CrossRef]

Hillenbrandt, R.

R. Hillenbrandt, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef]

Hudlet, S.

J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
[CrossRef]

Inouye, Y.

Jackson, H. E.

A. G. Ghoo, H. E. Jackson, U. Thiel, G. N. D. Brababder, and J. T. Boyd, “Near-field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

Kanako, T.

G. H. Vander Rhodes, B. B. Glodberg, M. S. Unlu, S. T. Chu, W. Pa, T. Kanako, K. Kokobun, and B. E. Little, “Measurement of optical spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett. 75, 2368–2370 (1999).
[CrossRef]

Kawata, S.

Keilmann, F.

R. Hillenbrandt, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef]

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. (Oxford) 202, 77–83 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

Knoll, B.

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. (Oxford) 202, 77–83 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

Kokobun, K.

G. H. Vander Rhodes, B. B. Glodberg, M. S. Unlu, S. T. Chu, W. Pa, T. Kanako, K. Kokobun, and B. E. Little, “Measurement of optical spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett. 75, 2368–2370 (1999).
[CrossRef]

Korterik, J. P.

M. L. M. Balistreri, J. P. Korterik, G. J. Veldhuis, L. Kuipers, and N. F. Van Hust, “Quantitative photo tunneling and shear force microscopy of planar wave guide splitters and mixers,” J. Appl. Phys. 89, 3307–3314 (2001).
[CrossRef]

Kuipers, L.

M. L. M. Balistreri, J. P. Korterik, G. J. Veldhuis, L. Kuipers, and N. F. Van Hust, “Quantitative photo tunneling and shear force microscopy of planar wave guide splitters and mixers,” J. Appl. Phys. 89, 3307–3314 (2001).
[CrossRef]

Laddada, R.

R. Laddada, S. Benrezzak, P. M. Adam, G. Viardot, J. L. Bijeon, and P. Royer, “Detection of an evanescent field scattered by silicon tips in an apertureless scanning near-field optical microscope,” Eur. Phys. J.: Appl. Phys. 6, 171–178 (1999).

Leopold, K. E.

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Scanning probe optical microscopy of evanescent fields,” Rev. Sci. Instrum. 69, 2981–2987 (1998).
[CrossRef]

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Bent-fiber near-field scanning optical microscopy probes for use with commercial atomic-force microscopes,” in Micromachining and Imaging, T. A. Michalske and M. A. Wendman, eds., Proc. SPIE 3009, 119–129 (1997).
[CrossRef]

Lerondel, G.

S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin, and V. Minier, “Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,” J. Microsc. (Oxford) 209, 155–161 (2003).
[CrossRef]

Little, B. E.

G. H. Vander Rhodes, B. B. Glodberg, M. S. Unlu, S. T. Chu, W. Pa, T. Kanako, K. Kokobun, and B. E. Little, “Measurement of optical spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett. 75, 2368–2370 (1999).
[CrossRef]

Minier, V.

S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin, and V. Minier, “Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,” J. Microsc. (Oxford) 209, 155–161 (2003).
[CrossRef]

Novotny, L.

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Pa, W.

G. H. Vander Rhodes, B. B. Glodberg, M. S. Unlu, S. T. Chu, W. Pa, T. Kanako, K. Kokobun, and B. E. Little, “Measurement of optical spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett. 75, 2368–2370 (1999).
[CrossRef]

Porto, J. A.

J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
[CrossRef]

Richard, A.

Royer, P.

S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin, and V. Minier, “Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,” J. Microsc. (Oxford) 209, 155–161 (2003).
[CrossRef]

J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
[CrossRef]

G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J.: Appl. Phys. 5, 269–275 (1999).

R. Laddada, S. Benrezzak, P. M. Adam, G. Viardot, J. L. Bijeon, and P. Royer, “Detection of an evanescent field scattered by silicon tips in an apertureless scanning near-field optical microscope,” Eur. Phys. J.: Appl. Phys. 6, 171–178 (1999).

G. Wurtz, R. Bachelot, and P. Royer, “A reflection-mode apertureless scanning near-field optical microscope developed from a commercial scanning probe microscope,” Rev. Sci. Instrum. 69, 1735–1743 (1998).
[CrossRef]

Sanchez, E. J.

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Stashkevich, A.

J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
[CrossRef]

Taubner, T.

R. Hillenbrandt, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef]

Taylor, R. S.

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Scanning probe optical microscopy of evanescent fields,” Rev. Sci. Instrum. 69, 2981–2987 (1998).
[CrossRef]

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Bent-fiber near-field scanning optical microscopy probes for use with commercial atomic-force microscopes,” in Micromachining and Imaging, T. A. Michalske and M. A. Wendman, eds., Proc. SPIE 3009, 119–129 (1997).
[CrossRef]

Tchénio, P.

Thiel, U.

A. G. Ghoo, H. E. Jackson, U. Thiel, G. N. D. Brababder, and J. T. Boyd, “Near-field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

Unlu, M. S.

G. H. Vander Rhodes, B. B. Glodberg, M. S. Unlu, S. T. Chu, W. Pa, T. Kanako, K. Kokobun, and B. E. Little, “Measurement of optical spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett. 75, 2368–2370 (1999).
[CrossRef]

Van Hust, N. F.

M. L. M. Balistreri, J. P. Korterik, G. J. Veldhuis, L. Kuipers, and N. F. Van Hust, “Quantitative photo tunneling and shear force microscopy of planar wave guide splitters and mixers,” J. Appl. Phys. 89, 3307–3314 (2001).
[CrossRef]

Vander Rhodes, G. H.

G. H. Vander Rhodes, B. B. Glodberg, M. S. Unlu, S. T. Chu, W. Pa, T. Kanako, K. Kokobun, and B. E. Little, “Measurement of optical spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett. 75, 2368–2370 (1999).
[CrossRef]

Veldhuis, G. J.

M. L. M. Balistreri, J. P. Korterik, G. J. Veldhuis, L. Kuipers, and N. F. Van Hust, “Quantitative photo tunneling and shear force microscopy of planar wave guide splitters and mixers,” J. Appl. Phys. 89, 3307–3314 (2001).
[CrossRef]

Viardot, G.

R. Laddada, S. Benrezzak, P. M. Adam, G. Viardot, J. L. Bijeon, and P. Royer, “Detection of an evanescent field scattered by silicon tips in an apertureless scanning near-field optical microscope,” Eur. Phys. J.: Appl. Phys. 6, 171–178 (1999).

Walford, J. N.

J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
[CrossRef]

Wendman, M.

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Scanning probe optical microscopy of evanescent fields,” Rev. Sci. Instrum. 69, 2981–2987 (1998).
[CrossRef]

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Bent-fiber near-field scanning optical microscopy probes for use with commercial atomic-force microscopes,” in Micromachining and Imaging, T. A. Michalske and M. A. Wendman, eds., Proc. SPIE 3009, 119–129 (1997).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Wurtz, G.

G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J.: Appl. Phys. 5, 269–275 (1999).

G. Wurtz, R. Bachelot, and P. Royer, “A reflection-mode apertureless scanning near-field optical microscope developed from a commercial scanning probe microscope,” Rev. Sci. Instrum. 69, 1735–1743 (1998).
[CrossRef]

Xie, X. S.

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

A. G. Ghoo, H. E. Jackson, U. Thiel, G. N. D. Brababder, and J. T. Boyd, “Near-field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

G. H. Vander Rhodes, B. B. Glodberg, M. S. Unlu, S. T. Chu, W. Pa, T. Kanako, K. Kokobun, and B. E. Little, “Measurement of optical spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett. 75, 2368–2370 (1999).
[CrossRef]

Eur. Phys. J.: Appl. Phys. (2)

G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J.: Appl. Phys. 5, 269–275 (1999).

R. Laddada, S. Benrezzak, P. M. Adam, G. Viardot, J. L. Bijeon, and P. Royer, “Detection of an evanescent field scattered by silicon tips in an apertureless scanning near-field optical microscope,” Eur. Phys. J.: Appl. Phys. 6, 171–178 (1999).

J. Appl. Phys. (2)

J. N. Walford, J. A. Porto, R. Carminati, J.-J. Greffet, P. M. Adam, S. Hudlet, J.-L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys. 89, 5159–5169 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, G. J. Veldhuis, L. Kuipers, and N. F. Van Hust, “Quantitative photo tunneling and shear force microscopy of planar wave guide splitters and mixers,” J. Appl. Phys. 89, 3307–3314 (2001).
[CrossRef]

J. Microsc. (Oxford) (2)

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. (Oxford) 202, 77–83 (2000).
[CrossRef]

S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin, and V. Minier, “Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,” J. Microsc. (Oxford) 209, 155–161 (2003).
[CrossRef]

Nature (2)

R. Hillenbrandt, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Proc. SPIE (2)

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Bent-fiber near-field scanning optical microscopy probes for use with commercial atomic-force microscopes,” in Micromachining and Imaging, T. A. Michalske and M. A. Wendman, eds., Proc. SPIE 3009, 119–129 (1997).
[CrossRef]

J.-E. Broquin, “Ion exchange integrated devices,” in Integrated Optics Devices V, G. C. Righini and S. Honkanen, eds., Proc. SPIE 4277, 105–115 (2001).
[CrossRef]

Rev. Sci. Instrum. (2)

G. Wurtz, R. Bachelot, and P. Royer, “A reflection-mode apertureless scanning near-field optical microscope developed from a commercial scanning probe microscope,” Rev. Sci. Instrum. 69, 1735–1743 (1998).
[CrossRef]

R. S. Taylor, K. E. Leopold, M. Wendman, G. Gurley, and V. Elings, “Scanning probe optical microscopy of evanescent fields,” Rev. Sci. Instrum. 69, 2981–2987 (1998).
[CrossRef]

Other (3)

C. J. Koester, “Interference microscopy: theory and techniques,” in The Encyclopedia of Microscopy, G. L. Clark, ed. (Reinhold, New York, 1961), pp. 420–434.

L. Dhar, H. J. Lee, E. J. Laskowski, S. K. Buratto, C. Narayanan, H. M. Presby, C. C. Bahr, P. J. Anthony, and M. J. Cardillo, “Refractive index profiling of planar optical waveguides using near-field scanning optical microscopy,” in Optical Fiber Communication Conference, Vol. 2 of 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 120–123.

D. Courjon and C. Bainier, eds., Le Champ Proche Optique. Théorie et applications (Springer-Verlag France and France Télécom R&D, Paris, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental configuration: (a) schematic representation of the set-up consisting of a photomultiplier tube (PMT), a lock-in amplifier (LIA), a commercial AFM from Park Scientific Instrument (AFM), a 9-μm-core optical fiber, a focusing lens (L), and an objective lens for light detection, N.A. 0.28 (Ob). (b) Type of sample used for the first observation, a channel integrated waveguide; (c) type of sample used for the detailed study: an evanescent wave is generated by total internal reflection inside the prism on which gold scattering structures have been deposited. Inset: AFM image of the gold structures.

Fig. 2
Fig. 2

20×20-μm-square images of the surface of a buried channel integrated waveguide: (a) AFM image; two round dust particles can be observed. (b) ASNOM image obtained at λ=0.632 μm; fringes appear mainly in the vicinity of the two dust particles; the two dashed lines represent 20-μm cross sections. (c) Fringe visibility is high. (d) Fringe visibility is low.

Fig. 3
Fig. 3

10×10-μm-square images of a surface channel integrated waveguide. (a) AFM image; 10-nm-high silver crystals indicate the waveguide location. (b) ASNOM image obtained at λ=0.632 μm; unlike Fig. 2(b), fringes appear everywhere; the two dashed lines represent 10-μm cross sections of the SNOM image. (c) Fringe visibility is very high. (d) SNOM signal is fading (see text for details).

Fig. 4
Fig. 4

10×10-μm-square ASNOM images of the evanescent wave generated by TIR at the prism surface. The images were recorded close to the scattering structures for different directions of illumination and detection whose respective projections onto the prism surface are represented by the black arrows. The white ovals indicate the position of the gold structures. The fringe orientation (with respect to the x axis) is (a) 50°, (c) 25°, and (e) 90°. The fringe period is (a) 410 nm, (c) 358 nm, and (e) 840 nm. Panels (b), (d), and (f) are calculated images corresponding to (a), (c), and (e), respectively (see text for details).

Fig. 5
Fig. 5

10×10-μm-square ASNOM image of the evanescent wave generated by TIR at the prism surface. The image was recorded far from the scattering structures. See Fig. 4(a) for a direct comparison.

Fig. 6
Fig. 6

Approach curves recorded above a bright fringe; ASNOM signal (arbitrary units) as a function of the average distance between the vibrating probe and the prism surface. (a) The signal recorded far from the gold scattering structures. (b), (c) Calculated curves corresponding to (a) (see text for details). (d) Signal recorded close to the gold scattering structures. (e), (f) Calculated curves corresponding to (d) (see text for details).

Fig. 7
Fig. 7

Approach curves recorded above a dark fringe (in arbitrary units). (a) ASNOM signal recorded close to the gold scattering structures, and (b) the corresponding calculated curve (see text for details).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φt=ki(xX+yY)-kd(xX+yY),
I=|Et|2+2|EgEt|cos[ϕt(x, y)+ϕ0],
If(A, z0)=IPexp(-2z0/Dp)I1(2A/Dp),
If (A, z0)=|TIf+TAf |=||Et|2exp(-2z0/Dp)I1(2A/Dp)+2|Et||Eg|cos(ϕt)exp(-z0/Dp)I1(A/Dp)|.

Metrics