Abstract

Several new derivatives of poly(p-phenylenevinylene) (PPV) are investigated regarding their linear and nonlinear optical material and waveguide properties, including their nonlinear photonic bandgap properties that are induced by photoablated periodic Bragg gratings. The new materials were prepared by means of the polycondensation route, which yields polymers with excellent solubilities and film-forming properties. Comparative data suggest that the new polycondensation-type MEH-PPV (completely soluble, strictly linear and fully conjugated), in particular, is the most promising polymer under investigation to fulfill the requirements for all-optical switching in planar waveguide photonic bandgap structures. UV-photobleaching techniques and photoablation in the UV, VIS, and near-infrared ranges at different pulse durations are investigated. Homogeneous submicrometer gratings that serve as Bragg reflectors have been fabricated in MEH-PPV thin films by application of these methods. The great potential of this type of materials for nonlinear all-optical switching applications that arises from their unique optical properties and their patterning behavior is discussed in detail. Numerical simulations of a switching device based on gap-soliton formation in a nonlinear periodic waveguide structure with the newly obtained material data have been carried out. We show that one can expect photonic bandgap all-optical switching in MEH-PPV planar waveguides. Device performance considering different grating parameters is discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13, 233–253 (1977).
    [CrossRef]
  2. G. I. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989).
    [CrossRef]
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  5. N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–202 (1999).
    [CrossRef]
  6. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
    [CrossRef] [PubMed]
  7. H. G. Winful, G. D. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
    [CrossRef]
  8. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
    [CrossRef] [PubMed]
  9. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, Amsterdam, 1994), Vol. 33, pp. 203–260.
  10. C. M. de Sterke, D. G. Salinas, and J. E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
    [CrossRef]
  11. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
    [CrossRef]
  12. J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56, 602–604 (1990).
    [CrossRef]
  13. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
    [CrossRef]
  14. K. Nakatsuhara, T. Mizumoto, E. Takahashi, S. Hossain, Y. Saka, B.-J. Ma, and Y. Nakano, “All-optical switching in a distributed-feedback GaInAsP waveguide,” Appl. Opt. 38, 3911–3916 (1999).
    [CrossRef]
  15. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
    [CrossRef] [PubMed]
  16. N. G. R. Broderick, D. Taverner, and D. J. Richardson, “Nonlinear switching in fiber Bragg gratings,” Opt. Express 3, 447–453 (1998), http://epubs.osa.org/opticsexpress.
    [CrossRef] [PubMed]
  17. K. Sasaki, K. Fujii, T. Tomioka, and T. Kinoshita, “All-optical bistabilities of polydiacetylene Langmuir–Blodgett film waveguides,” J. Opt. Soc. Am. B 5, 457–461 (1988).
    [CrossRef]
  18. S. Aramaki, G. Assanto, G. I. Stegeman, W. H. G. Horstuis, and G. R. Möhlman, “Integrated Bragg reflectors in polymeric channel waveguides,” Opt. Commun. 94, 326–330 (1992).
    [CrossRef]
  19. V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic bandgaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
    [CrossRef]
  20. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, UK, 1990).
  21. J. Messier, F. Kajzar, P. N. Prasad, and D. Ulrich, eds., Nonlinear Optical Effects in Organic Polymers (Kluwer, Dordrecht, The Netherlands, 1989).
  22. F. Kajzar and J. D. Swalen, eds., Organic Thin Films for Waveguiding Nonlinear Optics (Gordon and Breach, Amsterdam, 1996).
  23. G. I. Stegeman, “Applications of organic materials in third-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997), pp. 799–812.
  24. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987), Vol. 2.
  25. L. Palchetti, Q. Li, E. Giorgetti, D. Grando, and S. Sottini, “Photobleaching of polydiacetylene waveguides: a characterization of the process and patterning of optical elements,” Appl. Opt. 36, 1204–1212 (1997).
    [CrossRef] [PubMed]
  26. H. S. Nalwa, “Organic materials for third-order nonlinear optics,” Adv. Mater. 5, 341–358 (1993).
    [CrossRef]
  27. C. Bubeck, A. Kaltbeitzel, R. W. Lenz, D. Neher, J. D. Stenger-Smith, and G. Wegner, “Nonlinear optical properties of poly(p-phenylenevinylene) thin films,” in Nonlinear Optical Effects in Organic Polymers, J. Messier, F. Kajzar, P. N. Prasad, and D. Ulrich, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 143–147.
  28. A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, and C. Bubeck, “Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): a comparison with oligomers and scaling laws for conjugated polymers,” Phys. Rev. B 53, 4367–4376 (1996).
    [CrossRef]
  29. C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).
  30. U. Bartuch, A. Bräuer, P. Dannberg, H.-H. Hörhold, and D. Raabe, “Measurement of high nonresonant third-order nonlinearity in MP-PPV waveguides,” Int. J. Optoelectron. 7, 275–279 (1992).
  31. F. Michelotti, T. Gabler, H.-H. Hörhold, R. Waldhäusl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
    [CrossRef]
  32. Th. Gabler, R. Waldhäusl, A. Bräuer, U. Bartuch, R. Stockmann, and H.-H. Hörhold, “Nonresonant n2 and two-photon-absorption dispersion measurements of DPOP-PPV and DP-PPV/DP-DFP polymer strip waveguides,” Opt. Commun. 137, 31–36 (1997).
    [CrossRef]
  33. Th. Gabler, A. Bräuer, R. Waldhäusl, U. Bartuch, H.-H. Hörhold, and F. Michelotti, “Nonresonant n2 and TPA coefficient measurement in polymer waveguides by different measurement techniques,” Pure Appl. Opt. 7, 159–168 (1998).
    [CrossRef]
  34. S. J. Martin, D. D. C. Bradley, P. A. Lane, H. Mellor, and P. L. Burn, “Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV,” Phys. Rev. B 59, 15133–15142 (1999).
    [CrossRef]
  35. K. Ueberhofen, A. Deutesfeld, K. Koynov, and C. Bubeck, “Nonlinear optical waveguide spectroscopy of a conjugated polymer: poly(p-phenylenevinylene),” J. Opt. Soc. Am. B 16, 1921–1935 (1999).
    [CrossRef]
  36. K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. Hörhold, “Nonlinear prism coupling of MEH-PPV waveguides and their figure of merit for all-optical switching,” J. Opt. Soc. Am. B 19, 895–901 (2002).
    [CrossRef]
  37. The following authors, F. Fitrilawati, M. O. Tjia, S. Pfeiffer, H. Tillmann, H.-H. Hörhold, A. Deutesfeld, H. Eichner, and C. Bubeck, have submitted a paper entitled “Planar waveguides of PPV derivatives: attenuation loss, third-harmonic generation, and photostability” to Opt. Mater.
  38. H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
    [CrossRef]
  39. H.-H. Hörhold, H. Tillmann, C. Bader, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and thianthrene-containing PPV-derivatives as efficient polymeric materials for solid-state lasers,” in Organic Light Emitting Materials and Devices V, Z. A. Kafafi, ed., Proc. SPIE 4464, 317–328 (2002).
    [CrossRef]
  40. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
    [CrossRef]
  41. M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12, 1655–1668 (2000).
    [CrossRef]
  42. H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
    [CrossRef]
  43. G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, and H.-H. Hörhold, “Optically written solid-state DFB lasers with broadly tuneable mode emission based on improved poly(2, 5-dialkoxy-phenylene vinylene),” Appl. Phys. Lett. 80, 716–718 (2002).
    [CrossRef]
  44. S. Pfeiffer and H.-H. Hörhold, “Investigation of poly(arylene vinylene)s, 41—synthesis of soluble dialkoxy-substituted poly(phenylene alkenylidene)s by applying the Horner reaction for condensation polymerization,” Macromol. Chem. Phys. 200, 1870–1878 (1999).
    [CrossRef]
  45. S. Pfeiffer and H.-H. Hörhold, “Synthesis of soluble MEH-PPV and MEH-PPB by HORNER condensation polymerization,” Synth. Met. 101, 109–110 (1999).
    [CrossRef]
  46. A. Mathy, H.-U. Simmrock, and C. Bubeck, “Optical waveguiding in thin films of polyelectrolytes,” J. Phys. D 24, 1003–1008 (1991).
    [CrossRef]
  47. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
    [CrossRef] [PubMed]
  48. H. Schmidt, J. Ihlemann, and B. Wolff-Rottke, “Excimer laser micromachining based on dielectric masks,” in Laser Materials Processing and Machining, R. Ahlers, P. Hoffmann, H. Lindl, and R. Rothe, eds., Proc. SPIE 2246, 67–73 (1994).
    [CrossRef]
  49. K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys. A 65, 517–518 (1997).
    [CrossRef]
  50. F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
    [CrossRef]
  51. M. E. Lines, “Physical properties of materials: theoretical overview,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991), p. 57.
  52. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity single-beam n2 measurement,” Opt. Lett. 14, 955–957 (1989).
    [CrossRef] [PubMed]
  53. C. Bubeck, A. Kaltbeitzel, A. Grund, and M. LeClerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G,” Chem. Phys. 154, 343–348 (1991).
    [CrossRef]
  54. L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, and T. M. Miller, “Photophysics of phenylenevinylene polymers,” Synth. Met. 80, 41–58 (1996).
    [CrossRef]
  55. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
    [CrossRef] [PubMed]
  56. J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127, 53–57 (2002).
    [CrossRef]
  57. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
    [CrossRef]
  58. M. A. Bader and G. Marowsky, “Bragg gratings in planar polydiacetylene waveguides and their application in integrated optics,” Synth. Met. 124, 141–143 (2001).
    [CrossRef]
  59. M. J. Steel and C. M. de Sterke, “Gap solitary waves with gain and two-photon absorption,” Phys. Rev. A 48, 1625–1632 (1993).
    [CrossRef] [PubMed]
  60. For an illustration of these oscillations and how they can be removed by apodization see, e.g., J. E. Sipe, B. J. Eggleton, and T. A. Strasser, “Dispersion characteristics of nonuniform Bragg gratings: implications for WDM communication systems,” Opt. Commun. 152, 269–274 (1998).
    [CrossRef]
  61. Dietrich Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  62. C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled-mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–421 (1991).
    [CrossRef]

2002 (4)

H.-H. Hörhold, H. Tillmann, C. Bader, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and thianthrene-containing PPV-derivatives as efficient polymeric materials for solid-state lasers,” in Organic Light Emitting Materials and Devices V, Z. A. Kafafi, ed., Proc. SPIE 4464, 317–328 (2002).
[CrossRef]

G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, and H.-H. Hörhold, “Optically written solid-state DFB lasers with broadly tuneable mode emission based on improved poly(2, 5-dialkoxy-phenylene vinylene),” Appl. Phys. Lett. 80, 716–718 (2002).
[CrossRef]

J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127, 53–57 (2002).
[CrossRef]

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. Hörhold, “Nonlinear prism coupling of MEH-PPV waveguides and their figure of merit for all-optical switching,” J. Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

2001 (3)

M. A. Bader and G. Marowsky, “Bragg gratings in planar polydiacetylene waveguides and their application in integrated optics,” Synth. Met. 124, 141–143 (2001).
[CrossRef]

H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
[CrossRef]

H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
[CrossRef]

2000 (2)

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12, 1655–1668 (2000).
[CrossRef]

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

1999 (8)

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–202 (1999).
[CrossRef]

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
[CrossRef]

S. J. Martin, D. D. C. Bradley, P. A. Lane, H. Mellor, and P. L. Burn, “Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV,” Phys. Rev. B 59, 15133–15142 (1999).
[CrossRef]

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

S. Pfeiffer and H.-H. Hörhold, “Investigation of poly(arylene vinylene)s, 41—synthesis of soluble dialkoxy-substituted poly(phenylene alkenylidene)s by applying the Horner reaction for condensation polymerization,” Macromol. Chem. Phys. 200, 1870–1878 (1999).
[CrossRef]

S. Pfeiffer and H.-H. Hörhold, “Synthesis of soluble MEH-PPV and MEH-PPB by HORNER condensation polymerization,” Synth. Met. 101, 109–110 (1999).
[CrossRef]

K. Ueberhofen, A. Deutesfeld, K. Koynov, and C. Bubeck, “Nonlinear optical waveguide spectroscopy of a conjugated polymer: poly(p-phenylenevinylene),” J. Opt. Soc. Am. B 16, 1921–1935 (1999).
[CrossRef]

K. Nakatsuhara, T. Mizumoto, E. Takahashi, S. Hossain, Y. Saka, B.-J. Ma, and Y. Nakano, “All-optical switching in a distributed-feedback GaInAsP waveguide,” Appl. Opt. 38, 3911–3916 (1999).
[CrossRef]

1998 (3)

N. G. R. Broderick, D. Taverner, and D. J. Richardson, “Nonlinear switching in fiber Bragg gratings,” Opt. Express 3, 447–453 (1998), http://epubs.osa.org/opticsexpress.
[CrossRef] [PubMed]

For an illustration of these oscillations and how they can be removed by apodization see, e.g., J. E. Sipe, B. J. Eggleton, and T. A. Strasser, “Dispersion characteristics of nonuniform Bragg gratings: implications for WDM communication systems,” Opt. Commun. 152, 269–274 (1998).
[CrossRef]

Th. Gabler, A. Bräuer, R. Waldhäusl, U. Bartuch, H.-H. Hörhold, and F. Michelotti, “Nonresonant n2 and TPA coefficient measurement in polymer waveguides by different measurement techniques,” Pure Appl. Opt. 7, 159–168 (1998).
[CrossRef]

1997 (4)

Th. Gabler, R. Waldhäusl, A. Bräuer, U. Bartuch, R. Stockmann, and H.-H. Hörhold, “Nonresonant n2 and two-photon-absorption dispersion measurements of DPOP-PPV and DP-PPV/DP-DFP polymer strip waveguides,” Opt. Commun. 137, 31–36 (1997).
[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic bandgaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys. A 65, 517–518 (1997).
[CrossRef]

L. Palchetti, Q. Li, E. Giorgetti, D. Grando, and S. Sottini, “Photobleaching of polydiacetylene waveguides: a characterization of the process and patterning of optical elements,” Appl. Opt. 36, 1204–1212 (1997).
[CrossRef] [PubMed]

1996 (4)

L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, and T. M. Miller, “Photophysics of phenylenevinylene polymers,” Synth. Met. 80, 41–58 (1996).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef] [PubMed]

A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, and C. Bubeck, “Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): a comparison with oligomers and scaling laws for conjugated polymers,” Phys. Rev. B 53, 4367–4376 (1996).
[CrossRef]

C. M. de Sterke, D. G. Salinas, and J. E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
[CrossRef]

1995 (1)

F. Michelotti, T. Gabler, H.-H. Hörhold, R. Waldhäusl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

1994 (3)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

H. Schmidt, J. Ihlemann, and B. Wolff-Rottke, “Excimer laser micromachining based on dielectric masks,” in Laser Materials Processing and Machining, R. Ahlers, P. Hoffmann, H. Lindl, and R. Rothe, eds., Proc. SPIE 2246, 67–73 (1994).
[CrossRef]

J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
[CrossRef]

1993 (2)

M. J. Steel and C. M. de Sterke, “Gap solitary waves with gain and two-photon absorption,” Phys. Rev. A 48, 1625–1632 (1993).
[CrossRef] [PubMed]

H. S. Nalwa, “Organic materials for third-order nonlinear optics,” Adv. Mater. 5, 341–358 (1993).
[CrossRef]

1992 (3)

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

U. Bartuch, A. Bräuer, P. Dannberg, H.-H. Hörhold, and D. Raabe, “Measurement of high nonresonant third-order nonlinearity in MP-PPV waveguides,” Int. J. Optoelectron. 7, 275–279 (1992).

S. Aramaki, G. Assanto, G. I. Stegeman, W. H. G. Horstuis, and G. R. Möhlman, “Integrated Bragg reflectors in polymeric channel waveguides,” Opt. Commun. 94, 326–330 (1992).
[CrossRef]

1991 (3)

C. Bubeck, A. Kaltbeitzel, A. Grund, and M. LeClerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

A. Mathy, H.-U. Simmrock, and C. Bubeck, “Optical waveguiding in thin films of polyelectrolytes,” J. Phys. D 24, 1003–1008 (1991).
[CrossRef]

C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled-mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–421 (1991).
[CrossRef]

1990 (1)

J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56, 602–604 (1990).
[CrossRef]

1989 (4)

1988 (1)

1987 (3)

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

1979 (1)

H. G. Winful, G. D. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[CrossRef]

1977 (1)

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13, 233–253 (1977).
[CrossRef]

1973 (1)

Aceves, A. B.

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
[CrossRef]

Andrejco, M. J.

Anselmetti, D.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
[CrossRef]

Aramaki, S.

S. Aramaki, G. Assanto, G. I. Stegeman, W. H. G. Horstuis, and G. R. Möhlman, “Integrated Bragg reflectors in polymeric channel waveguides,” Opt. Commun. 94, 326–330 (1992).
[CrossRef]

Assanto, G.

S. Aramaki, G. Assanto, G. I. Stegeman, W. H. G. Horstuis, and G. R. Möhlman, “Integrated Bragg reflectors in polymeric channel waveguides,” Opt. Commun. 94, 326–330 (1992).
[CrossRef]

J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56, 602–604 (1990).
[CrossRef]

Bader, C.

H.-H. Hörhold, H. Tillmann, C. Bader, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and thianthrene-containing PPV-derivatives as efficient polymeric materials for solid-state lasers,” in Organic Light Emitting Materials and Devices V, Z. A. Kafafi, ed., Proc. SPIE 4464, 317–328 (2002).
[CrossRef]

H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
[CrossRef]

Bader, M. A.

J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127, 53–57 (2002).
[CrossRef]

M. A. Bader and G. Marowsky, “Bragg gratings in planar polydiacetylene waveguides and their application in integrated optics,” Synth. Met. 124, 141–143 (2001).
[CrossRef]

Bahtiar, A.

Baier, U.

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

Bartuch, U.

Th. Gabler, A. Bräuer, R. Waldhäusl, U. Bartuch, H.-H. Hörhold, and F. Michelotti, “Nonresonant n2 and TPA coefficient measurement in polymer waveguides by different measurement techniques,” Pure Appl. Opt. 7, 159–168 (1998).
[CrossRef]

Th. Gabler, R. Waldhäusl, A. Bräuer, U. Bartuch, R. Stockmann, and H.-H. Hörhold, “Nonresonant n2 and two-photon-absorption dispersion measurements of DPOP-PPV and DP-PPV/DP-DFP polymer strip waveguides,” Opt. Commun. 137, 31–36 (1997).
[CrossRef]

U. Bartuch, A. Bräuer, P. Dannberg, H.-H. Hörhold, and D. Raabe, “Measurement of high nonresonant third-order nonlinearity in MP-PPV waveguides,” Int. J. Optoelectron. 7, 275–279 (1992).

Bauer, I.

J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127, 53–57 (2002).
[CrossRef]

Baumann, I.

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys. A 65, 517–518 (1997).
[CrossRef]

Beinhorn, F.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
[CrossRef]

Berger, V.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic bandgaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Best, A.

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Bradley, D. D. C.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

S. J. Martin, D. D. C. Bradley, P. A. Lane, H. Mellor, and P. L. Burn, “Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV,” Phys. Rev. B 59, 15133–15142 (1999).
[CrossRef]

Bräuer, A.

H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
[CrossRef]

Th. Gabler, A. Bräuer, R. Waldhäusl, U. Bartuch, H.-H. Hörhold, and F. Michelotti, “Nonresonant n2 and TPA coefficient measurement in polymer waveguides by different measurement techniques,” Pure Appl. Opt. 7, 159–168 (1998).
[CrossRef]

Th. Gabler, R. Waldhäusl, A. Bräuer, U. Bartuch, R. Stockmann, and H.-H. Hörhold, “Nonresonant n2 and two-photon-absorption dispersion measurements of DPOP-PPV and DP-PPV/DP-DFP polymer strip waveguides,” Opt. Commun. 137, 31–36 (1997).
[CrossRef]

F. Michelotti, T. Gabler, H.-H. Hörhold, R. Waldhäusl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

U. Bartuch, A. Bräuer, P. Dannberg, H.-H. Hörhold, and D. Raabe, “Measurement of high nonresonant third-order nonlinearity in MP-PPV waveguides,” Int. J. Optoelectron. 7, 275–279 (1992).

Bredas, J. L.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

Broderick, N. G. R.

Brown, T. G.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

Bubeck, C.

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. Hörhold, “Nonlinear prism coupling of MEH-PPV waveguides and their figure of merit for all-optical switching,” J. Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

K. Ueberhofen, A. Deutesfeld, K. Koynov, and C. Bubeck, “Nonlinear optical waveguide spectroscopy of a conjugated polymer: poly(p-phenylenevinylene),” J. Opt. Soc. Am. B 16, 1921–1935 (1999).
[CrossRef]

A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, and C. Bubeck, “Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): a comparison with oligomers and scaling laws for conjugated polymers,” Phys. Rev. B 53, 4367–4376 (1996).
[CrossRef]

A. Mathy, H.-U. Simmrock, and C. Bubeck, “Optical waveguiding in thin films of polyelectrolytes,” J. Phys. D 24, 1003–1008 (1991).
[CrossRef]

C. Bubeck, A. Kaltbeitzel, A. Grund, and M. LeClerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

Burn, P. L.

S. J. Martin, D. D. C. Bradley, P. A. Lane, H. Mellor, and P. L. Burn, “Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV,” Phys. Rev. B 59, 15133–15142 (1999).
[CrossRef]

Burroughes, J. H.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

Chen, K.

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys. A 65, 517–518 (1997).
[CrossRef]

Chen, W.

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[CrossRef] [PubMed]

Costard, E.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic bandgaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Dannberg, P.

U. Bartuch, A. Bräuer, P. Dannberg, H.-H. Hörhold, and D. Raabe, “Measurement of high nonresonant third-order nonlinearity in MP-PPV waveguides,” Int. J. Optoelectron. 7, 275–279 (1992).

de Sterke, C. M.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef] [PubMed]

C. M. de Sterke, D. G. Salinas, and J. E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
[CrossRef]

J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
[CrossRef]

M. J. Steel and C. M. de Sterke, “Gap solitary waves with gain and two-photon absorption,” Phys. Rev. A 48, 1625–1632 (1993).
[CrossRef] [PubMed]

C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled-mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–421 (1991).
[CrossRef]

DeLong, K. W.

Deutesfeld, A.

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Edlinger, J.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
[CrossRef]

Eggleton, B. J.

For an illustration of these oscillations and how they can be removed by apodization see, e.g., J. E. Sipe, B. J. Eggleton, and T. A. Strasser, “Dispersion characteristics of nonuniform Bragg gratings: implications for WDM communication systems,” Opt. Commun. 152, 269–274 (1998).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef] [PubMed]

Ehrlich, J. E.

J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56, 602–604 (1990).
[CrossRef]

Eichner, H.

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

Elflein, W.

H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
[CrossRef]

Fitrilawati, F.

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. Hörhold, “Nonlinear prism coupling of MEH-PPV waveguides and their figure of merit for all-optical switching,” J. Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

Former, C.

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

Friend, R. H.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

Fujii, K.

Gabler, T.

F. Michelotti, T. Gabler, H.-H. Hörhold, R. Waldhäusl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

Gabler, Th.

Th. Gabler, A. Bräuer, R. Waldhäusl, U. Bartuch, H.-H. Hörhold, and F. Michelotti, “Nonresonant n2 and TPA coefficient measurement in polymer waveguides by different measurement techniques,” Pure Appl. Opt. 7, 159–168 (1998).
[CrossRef]

Th. Gabler, R. Waldhäusl, A. Bräuer, U. Bartuch, R. Stockmann, and H.-H. Hörhold, “Nonresonant n2 and two-photon-absorption dispersion measurements of DPOP-PPV and DP-PPV/DP-DFP polymer strip waveguides,” Opt. Commun. 137, 31–36 (1997).
[CrossRef]

Galvin, M. E.

L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, and T. M. Miller, “Photophysics of phenylenevinylene polymers,” Synth. Met. 80, 41–58 (1996).
[CrossRef]

Garay, R.

A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, and C. Bubeck, “Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): a comparison with oligomers and scaling laws for conjugated polymers,” Phys. Rev. B 53, 4367–4376 (1996).
[CrossRef]

Garmire, E.

H. G. Winful, G. D. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[CrossRef]

Gauthier-Lafaye, O.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic bandgaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Giorgetti, E.

Goutev, N.

Grando, D.

Gregorius, H.

A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, and C. Bubeck, “Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): a comparison with oligomers and scaling laws for conjugated polymers,” Phys. Rev. B 53, 4367–4376 (1996).
[CrossRef]

Grund, A.

C. Bubeck, A. Kaltbeitzel, A. Grund, and M. LeClerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

Gymer, R. W.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

Heeger, A. J.

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12, 1655–1668 (2000).
[CrossRef]

Helbig, M.

H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
[CrossRef]

Holmes, A. B.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

Holzer, W.

H.-H. Hörhold, H. Tillmann, C. Bader, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and thianthrene-containing PPV-derivatives as efficient polymeric materials for solid-state lasers,” in Organic Light Emitting Materials and Devices V, Z. A. Kafafi, ed., Proc. SPIE 4464, 317–328 (2002).
[CrossRef]

H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
[CrossRef]

H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
[CrossRef]

Hörhold, H.-H.

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. Hörhold, “Nonlinear prism coupling of MEH-PPV waveguides and their figure of merit for all-optical switching,” J. Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, and H.-H. Hörhold, “Optically written solid-state DFB lasers with broadly tuneable mode emission based on improved poly(2, 5-dialkoxy-phenylene vinylene),” Appl. Phys. Lett. 80, 716–718 (2002).
[CrossRef]

H.-H. Hörhold, H. Tillmann, C. Bader, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and thianthrene-containing PPV-derivatives as efficient polymeric materials for solid-state lasers,” in Organic Light Emitting Materials and Devices V, Z. A. Kafafi, ed., Proc. SPIE 4464, 317–328 (2002).
[CrossRef]

H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
[CrossRef]

H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
[CrossRef]

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

S. Pfeiffer and H.-H. Hörhold, “Synthesis of soluble MEH-PPV and MEH-PPB by HORNER condensation polymerization,” Synth. Met. 101, 109–110 (1999).
[CrossRef]

S. Pfeiffer and H.-H. Hörhold, “Investigation of poly(arylene vinylene)s, 41—synthesis of soluble dialkoxy-substituted poly(phenylene alkenylidene)s by applying the Horner reaction for condensation polymerization,” Macromol. Chem. Phys. 200, 1870–1878 (1999).
[CrossRef]

Th. Gabler, A. Bräuer, R. Waldhäusl, U. Bartuch, H.-H. Hörhold, and F. Michelotti, “Nonresonant n2 and TPA coefficient measurement in polymer waveguides by different measurement techniques,” Pure Appl. Opt. 7, 159–168 (1998).
[CrossRef]

Th. Gabler, R. Waldhäusl, A. Bräuer, U. Bartuch, R. Stockmann, and H.-H. Hörhold, “Nonresonant n2 and two-photon-absorption dispersion measurements of DPOP-PPV and DP-PPV/DP-DFP polymer strip waveguides,” Opt. Commun. 137, 31–36 (1997).
[CrossRef]

F. Michelotti, T. Gabler, H.-H. Hörhold, R. Waldhäusl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

U. Bartuch, A. Bräuer, P. Dannberg, H.-H. Hörhold, and D. Raabe, “Measurement of high nonresonant third-order nonlinearity in MP-PPV waveguides,” Int. J. Optoelectron. 7, 275–279 (1992).

Horstuis, W. H. G.

S. Aramaki, G. Assanto, G. I. Stegeman, W. H. G. Horstuis, and G. R. Möhlman, “Integrated Bragg reflectors in polymeric channel waveguides,” Opt. Commun. 94, 326–330 (1992).
[CrossRef]

Hossain, S.

Ihlemann, J.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
[CrossRef]

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys. A 65, 517–518 (1997).
[CrossRef]

H. Schmidt, J. Ihlemann, and B. Wolff-Rottke, “Excimer laser micromachining based on dielectric masks,” in Laser Materials Processing and Machining, R. Ahlers, P. Hoffmann, H. Lindl, and R. Rothe, eds., Proc. SPIE 2246, 67–73 (1994).
[CrossRef]

Jackson, K. R.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Kaltbeitzel, A.

C. Bubeck, A. Kaltbeitzel, A. Grund, and M. LeClerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

Kinoshita, T.

Klein-Wiele, J.-H.

J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127, 53–57 (2002).
[CrossRef]

Klemm, E.

H.-H. Hörhold, H. Tillmann, C. Bader, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and thianthrene-containing PPV-derivatives as efficient polymeric materials for solid-state lasers,” in Organic Light Emitting Materials and Devices V, Z. A. Kafafi, ed., Proc. SPIE 4464, 317–328 (2002).
[CrossRef]

H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
[CrossRef]

Koroteev, N. I.

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–202 (1999).
[CrossRef]

Koynov, K.

Kranzelbinder, G.

G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, and H.-H. Hörhold, “Optically written solid-state DFB lasers with broadly tuneable mode emission based on improved poly(2, 5-dialkoxy-phenylene vinylene),” Appl. Phys. Lett. 80, 716–718 (2002).
[CrossRef]

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef] [PubMed]

Kwock, E. W.

L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, and T. M. Miller, “Photophysics of phenylenevinylene polymers,” Synth. Met. 80, 41–58 (1996).
[CrossRef]

Lane, P. A.

S. J. Martin, D. D. C. Bradley, P. A. Lane, H. Mellor, and P. L. Burn, “Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV,” Phys. Rev. B 59, 15133–15142 (1999).
[CrossRef]

LeClerc, M.

C. Bubeck, A. Kaltbeitzel, A. Grund, and M. LeClerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

Li, Q.

List, E. W. J.

G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, and H.-H. Hörhold, “Optically written solid-state DFB lasers with broadly tuneable mode emission based on improved poly(2, 5-dialkoxy-phenylene vinylene),” Appl. Phys. Lett. 80, 716–718 (2002).
[CrossRef]

Logdlund, M.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

Ma, B.-J.

Magnitskii, S. A.

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–202 (1999).
[CrossRef]

Maisenhölder, B.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
[CrossRef]

Marburger, G. D.

H. G. Winful, G. D. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[CrossRef]

Marks, R. N.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

Marowsky, G.

J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127, 53–57 (2002).
[CrossRef]

M. A. Bader and G. Marowsky, “Bragg gratings in planar polydiacetylene waveguides and their application in integrated optics,” Synth. Met. 124, 141–143 (2001).
[CrossRef]

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
[CrossRef]

Martin, S. J.

S. J. Martin, D. D. C. Bradley, P. A. Lane, H. Mellor, and P. L. Burn, “Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV,” Phys. Rev. B 59, 15133–15142 (1999).
[CrossRef]

Mathy, A.

A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, and C. Bubeck, “Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): a comparison with oligomers and scaling laws for conjugated polymers,” Phys. Rev. B 53, 4367–4376 (1996).
[CrossRef]

A. Mathy, H.-U. Simmrock, and C. Bubeck, “Optical waveguiding in thin films of polyelectrolytes,” J. Phys. D 24, 1003–1008 (1991).
[CrossRef]

McGehee, M. D.

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12, 1655–1668 (2000).
[CrossRef]

Mellor, H.

S. J. Martin, D. D. C. Bradley, P. A. Lane, H. Mellor, and P. L. Burn, “Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV,” Phys. Rev. B 59, 15133–15142 (1999).
[CrossRef]

Michelotti, F.

Th. Gabler, A. Bräuer, R. Waldhäusl, U. Bartuch, H.-H. Hörhold, and F. Michelotti, “Nonresonant n2 and TPA coefficient measurement in polymer waveguides by different measurement techniques,” Pure Appl. Opt. 7, 159–168 (1998).
[CrossRef]

F. Michelotti, T. Gabler, H.-H. Hörhold, R. Waldhäusl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

Miller, T. M.

L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, and T. M. Miller, “Photophysics of phenylenevinylene polymers,” Synth. Met. 80, 41–58 (1996).
[CrossRef]

Mills, D. L.

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[CrossRef] [PubMed]

Mizrahi, V.

Mizumoto, T.

Möhlman, G. R.

S. Aramaki, G. Assanto, G. I. Stegeman, W. H. G. Horstuis, and G. R. Möhlman, “Integrated Bragg reflectors in polymeric channel waveguides,” Opt. Commun. 94, 326–330 (1992).
[CrossRef]

Müllen, K.

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, and C. Bubeck, “Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): a comparison with oligomers and scaling laws for conjugated polymers,” Phys. Rev. B 53, 4367–4376 (1996).
[CrossRef]

Nakamura, M.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13, 233–253 (1977).
[CrossRef]

Nakano, Y.

Nakatsuhara, K.

Nalwa, H. S.

H. S. Nalwa, “Organic materials for third-order nonlinear optics,” Adv. Mater. 5, 341–358 (1993).
[CrossRef]

Neuschäfer, D.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
[CrossRef]

Novotny, J.

H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
[CrossRef]

Palchetti, L.

Papadimitrakopoulos, F.

L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, and T. M. Miller, “Photophysics of phenylenevinylene polymers,” Synth. Met. 80, 41–58 (1996).
[CrossRef]

Penzkofer, A.

H.-H. Hörhold, H. Tillmann, C. Bader, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and thianthrene-containing PPV-derivatives as efficient polymeric materials for solid-state lasers,” in Organic Light Emitting Materials and Devices V, Z. A. Kafafi, ed., Proc. SPIE 4464, 317–328 (2002).
[CrossRef]

H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
[CrossRef]

H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
[CrossRef]

Pfeiffer, S.

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

S. Pfeiffer and H.-H. Hörhold, “Synthesis of soluble MEH-PPV and MEH-PPB by HORNER condensation polymerization,” Synth. Met. 101, 109–110 (1999).
[CrossRef]

S. Pfeiffer and H.-H. Hörhold, “Investigation of poly(arylene vinylene)s, 41—synthesis of soluble dialkoxy-substituted poly(phenylene alkenylidene)s by applying the Horner reaction for condensation polymerization,” Macromol. Chem. Phys. 200, 1870–1878 (1999).
[CrossRef]

Pogantsch, A.

G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, and H.-H. Hörhold, “Optically written solid-state DFB lasers with broadly tuneable mode emission based on improved poly(2, 5-dialkoxy-phenylene vinylene),” Appl. Phys. Lett. 80, 716–718 (2002).
[CrossRef]

Poladian, L.

Prelewitz, D. F.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

Raabe, D.

H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
[CrossRef]

U. Bartuch, A. Bräuer, P. Dannberg, H.-H. Hörhold, and D. Raabe, “Measurement of high nonresonant third-order nonlinearity in MP-PPV waveguides,” Int. J. Optoelectron. 7, 275–279 (1992).

Richardson, D. J.

Robert, B. D.

Rothberg, L. J.

L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, and T. M. Miller, “Photophysics of phenylenevinylene polymers,” Synth. Met. 80, 41–58 (1996).
[CrossRef]

Said, A. A.

Saifi, M. A.

Saka, Y.

Salaneck, W. R.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

Salinas, D. G.

C. M. de Sterke, D. G. Salinas, and J. E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
[CrossRef]

Sankey, N. D.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

Santos, D. A. Dos

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

Sasaki, K.

Scalora, M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Schenk, R.

A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, and C. Bubeck, “Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): a comparison with oligomers and scaling laws for conjugated polymers,” Phys. Rev. B 53, 4367–4376 (1996).
[CrossRef]

Schmidt, H.

H. Schmidt, J. Ihlemann, and B. Wolff-Rottke, “Excimer laser micromachining based on dielectric masks,” in Laser Materials Processing and Machining, R. Ahlers, P. Hoffmann, H. Lindl, and R. Rothe, eds., Proc. SPIE 2246, 67–73 (1994).
[CrossRef]

Sheik-Bahae, M.

Simmrock, H.-U.

A. Mathy, H.-U. Simmrock, and C. Bubeck, “Optical waveguiding in thin films of polyelectrolytes,” J. Phys. D 24, 1003–1008 (1991).
[CrossRef]

Simon, P.

J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127, 53–57 (2002).
[CrossRef]

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
[CrossRef]

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys. A 65, 517–518 (1997).
[CrossRef]

Sipe, J. E.

For an illustration of these oscillations and how they can be removed by apodization see, e.g., J. E. Sipe, B. J. Eggleton, and T. A. Strasser, “Dispersion characteristics of nonuniform Bragg gratings: implications for WDM communication systems,” Opt. Commun. 152, 269–274 (1998).
[CrossRef]

C. M. de Sterke, D. G. Salinas, and J. E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef] [PubMed]

J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
[CrossRef]

Slusher, R. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef] [PubMed]

Sohler, W.

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys. A 65, 517–518 (1997).
[CrossRef]

Soria, S.

J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127, 53–57 (2002).
[CrossRef]

Sottini, S.

Steel, M. J.

M. J. Steel and C. M. de Sterke, “Gap solitary waves with gain and two-photon absorption,” Phys. Rev. A 48, 1625–1632 (1993).
[CrossRef] [PubMed]

Stegeman, G. I.

S. Aramaki, G. Assanto, G. I. Stegeman, W. H. G. Horstuis, and G. R. Möhlman, “Integrated Bragg reflectors in polymeric channel waveguides,” Opt. Commun. 94, 326–330 (1992).
[CrossRef]

J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56, 602–604 (1990).
[CrossRef]

V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
[CrossRef] [PubMed]

G. I. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989).
[CrossRef]

Stockmann, R.

H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
[CrossRef]

Th. Gabler, R. Waldhäusl, A. Bräuer, U. Bartuch, R. Stockmann, and H.-H. Hörhold, “Nonresonant n2 and two-photon-absorption dispersion measurements of DPOP-PPV and DP-PPV/DP-DFP polymer strip waveguides,” Opt. Commun. 137, 31–36 (1997).
[CrossRef]

Stolen, R. H.

Strasser, T. A.

For an illustration of these oscillations and how they can be removed by apodization see, e.g., J. E. Sipe, B. J. Eggleton, and T. A. Strasser, “Dispersion characteristics of nonuniform Bragg gratings: implications for WDM communication systems,” Opt. Commun. 152, 269–274 (1998).
[CrossRef]

Takahashi, E.

Taliani, C.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

Tarasishin, A. V.

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–202 (1999).
[CrossRef]

Taverner, D.

Tillmann, H.

H.-H. Hörhold, H. Tillmann, C. Bader, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and thianthrene-containing PPV-derivatives as efficient polymeric materials for solid-state lasers,” in Organic Light Emitting Materials and Devices V, Z. A. Kafafi, ed., Proc. SPIE 4464, 317–328 (2002).
[CrossRef]

G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, and H.-H. Hörhold, “Optically written solid-state DFB lasers with broadly tuneable mode emission based on improved poly(2, 5-dialkoxy-phenylene vinylene),” Appl. Phys. Lett. 80, 716–718 (2002).
[CrossRef]

H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
[CrossRef]

H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
[CrossRef]

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

Tomioka, T.

Torge, R.

Toussaere, E.

G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, and H.-H. Hörhold, “Optically written solid-state DFB lasers with broadly tuneable mode emission based on improved poly(2, 5-dialkoxy-phenylene vinylene),” Appl. Phys. Lett. 80, 716–718 (2002).
[CrossRef]

Ueberhofen, K.

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

K. Ueberhofen, A. Deutesfeld, K. Koynov, and C. Bubeck, “Nonlinear optical waveguide spectroscopy of a conjugated polymer: poly(p-phenylenevinylene),” J. Opt. Soc. Am. B 16, 1921–1935 (1999).
[CrossRef]

A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, and C. Bubeck, “Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): a comparison with oligomers and scaling laws for conjugated polymers,” Phys. Rev. B 53, 4367–4376 (1996).
[CrossRef]

Ulrich, R.

Van Stryland, E. W.

Wabnitz, S.

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
[CrossRef]

Waldhäusl, R.

Th. Gabler, A. Bräuer, R. Waldhäusl, U. Bartuch, H.-H. Hörhold, and F. Michelotti, “Nonresonant n2 and TPA coefficient measurement in polymer waveguides by different measurement techniques,” Pure Appl. Opt. 7, 159–168 (1998).
[CrossRef]

Th. Gabler, R. Waldhäusl, A. Bräuer, U. Bartuch, R. Stockmann, and H.-H. Hörhold, “Nonresonant n2 and two-photon-absorption dispersion measurements of DPOP-PPV and DP-PPV/DP-DFP polymer strip waveguides,” Opt. Commun. 137, 31–36 (1997).
[CrossRef]

F. Michelotti, T. Gabler, H.-H. Hörhold, R. Waldhäusl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

Winful, H. G.

H. G. Winful, G. D. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[CrossRef]

Wolff-Rottke, B.

H. Schmidt, J. Ihlemann, and B. Wolff-Rottke, “Excimer laser micromachining based on dielectric masks,” in Laser Materials Processing and Machining, R. Ahlers, P. Hoffmann, H. Lindl, and R. Rothe, eds., Proc. SPIE 2246, 67–73 (1994).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yan, M.

L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, and T. M. Miller, “Photophysics of phenylenevinylene polymers,” Synth. Met. 80, 41–58 (1996).
[CrossRef]

Yariv, A.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13, 233–253 (1977).
[CrossRef]

Zheltikov, A. M.

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–202 (1999).
[CrossRef]

Ziegler, J.

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

Zyss, J.

G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, and H.-H. Hörhold, “Optically written solid-state DFB lasers with broadly tuneable mode emission based on improved poly(2, 5-dialkoxy-phenylene vinylene),” Appl. Phys. Lett. 80, 716–718 (2002).
[CrossRef]

Adv. Mater. (2)

H. S. Nalwa, “Organic materials for third-order nonlinear optics,” Adv. Mater. 5, 341–358 (1993).
[CrossRef]

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12, 1655–1668 (2000).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys. A 65, 517–518 (1997).
[CrossRef]

Appl. Phys. Lett. (4)

G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, and H.-H. Hörhold, “Optically written solid-state DFB lasers with broadly tuneable mode emission based on improved poly(2, 5-dialkoxy-phenylene vinylene),” Appl. Phys. Lett. 80, 716–718 (2002).
[CrossRef]

J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56, 602–604 (1990).
[CrossRef]

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

H. G. Winful, G. D. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[CrossRef]

Appl. Surf. Sci. (1)

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
[CrossRef]

Chem. Phys. (1)

C. Bubeck, A. Kaltbeitzel, A. Grund, and M. LeClerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13, 233–253 (1977).
[CrossRef]

Int. J. Optoelectron. (1)

U. Bartuch, A. Bräuer, P. Dannberg, H.-H. Hörhold, and D. Raabe, “Measurement of high nonresonant third-order nonlinearity in MP-PPV waveguides,” Int. J. Optoelectron. 7, 275–279 (1992).

J. Appl. Phys. (1)

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic bandgaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (5)

J. Phys. D (1)

A. Mathy, H.-U. Simmrock, and C. Bubeck, “Optical waveguiding in thin films of polyelectrolytes,” J. Phys. D 24, 1003–1008 (1991).
[CrossRef]

Macromol. Chem. Phys. (1)

S. Pfeiffer and H.-H. Hörhold, “Investigation of poly(arylene vinylene)s, 41—synthesis of soluble dialkoxy-substituted poly(phenylene alkenylidene)s by applying the Horner reaction for condensation polymerization,” Macromol. Chem. Phys. 200, 1870–1878 (1999).
[CrossRef]

Nature (1)

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
[CrossRef]

Nonlinear Opt. (1)

C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).

Opt. Commun. (5)

F. Michelotti, T. Gabler, H.-H. Hörhold, R. Waldhäusl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

Th. Gabler, R. Waldhäusl, A. Bräuer, U. Bartuch, R. Stockmann, and H.-H. Hörhold, “Nonresonant n2 and two-photon-absorption dispersion measurements of DPOP-PPV and DP-PPV/DP-DFP polymer strip waveguides,” Opt. Commun. 137, 31–36 (1997).
[CrossRef]

S. Aramaki, G. Assanto, G. I. Stegeman, W. H. G. Horstuis, and G. R. Möhlman, “Integrated Bragg reflectors in polymeric channel waveguides,” Opt. Commun. 94, 326–330 (1992).
[CrossRef]

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–202 (1999).
[CrossRef]

For an illustration of these oscillations and how they can be removed by apodization see, e.g., J. E. Sipe, B. J. Eggleton, and T. A. Strasser, “Dispersion characteristics of nonuniform Bragg gratings: implications for WDM communication systems,” Opt. Commun. 152, 269–274 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Lett. A (1)

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
[CrossRef]

Phys. Rev. A (1)

M. J. Steel and C. M. de Sterke, “Gap solitary waves with gain and two-photon absorption,” Phys. Rev. A 48, 1625–1632 (1993).
[CrossRef] [PubMed]

Phys. Rev. B (2)

A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, and C. Bubeck, “Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): a comparison with oligomers and scaling laws for conjugated polymers,” Phys. Rev. B 53, 4367–4376 (1996).
[CrossRef]

S. J. Martin, D. D. C. Bradley, P. A. Lane, H. Mellor, and P. L. Burn, “Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV,” Phys. Rev. B 59, 15133–15142 (1999).
[CrossRef]

Phys. Rev. E (1)

C. M. de Sterke, D. G. Salinas, and J. E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
[CrossRef]

Phys. Rev. Lett. (5)

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[CrossRef] [PubMed]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef] [PubMed]

Proc. SPIE (3)

H. Schmidt, J. Ihlemann, and B. Wolff-Rottke, “Excimer laser micromachining based on dielectric masks,” in Laser Materials Processing and Machining, R. Ahlers, P. Hoffmann, H. Lindl, and R. Rothe, eds., Proc. SPIE 2246, 67–73 (1994).
[CrossRef]

H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
[CrossRef]

H.-H. Hörhold, H. Tillmann, C. Bader, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and thianthrene-containing PPV-derivatives as efficient polymeric materials for solid-state lasers,” in Organic Light Emitting Materials and Devices V, Z. A. Kafafi, ed., Proc. SPIE 4464, 317–328 (2002).
[CrossRef]

Pure Appl. Opt. (1)

Th. Gabler, A. Bräuer, R. Waldhäusl, U. Bartuch, H.-H. Hörhold, and F. Michelotti, “Nonresonant n2 and TPA coefficient measurement in polymer waveguides by different measurement techniques,” Pure Appl. Opt. 7, 159–168 (1998).
[CrossRef]

Synth. Met. (5)

H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
[CrossRef]

S. Pfeiffer and H.-H. Hörhold, “Synthesis of soluble MEH-PPV and MEH-PPB by HORNER condensation polymerization,” Synth. Met. 101, 109–110 (1999).
[CrossRef]

L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, and T. M. Miller, “Photophysics of phenylenevinylene polymers,” Synth. Met. 80, 41–58 (1996).
[CrossRef]

J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127, 53–57 (2002).
[CrossRef]

M. A. Bader and G. Marowsky, “Bragg gratings in planar polydiacetylene waveguides and their application in integrated optics,” Synth. Met. 124, 141–143 (2001).
[CrossRef]

Other (10)

M. E. Lines, “Physical properties of materials: theoretical overview,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991), p. 57.

Dietrich Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

The following authors, F. Fitrilawati, M. O. Tjia, S. Pfeiffer, H. Tillmann, H.-H. Hörhold, A. Deutesfeld, H. Eichner, and C. Bubeck, have submitted a paper entitled “Planar waveguides of PPV derivatives: attenuation loss, third-harmonic generation, and photostability” to Opt. Mater.

C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, Amsterdam, 1994), Vol. 33, pp. 203–260.

C. Bubeck, A. Kaltbeitzel, R. W. Lenz, D. Neher, J. D. Stenger-Smith, and G. Wegner, “Nonlinear optical properties of poly(p-phenylenevinylene) thin films,” in Nonlinear Optical Effects in Organic Polymers, J. Messier, F. Kajzar, P. N. Prasad, and D. Ulrich, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 143–147.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, UK, 1990).

J. Messier, F. Kajzar, P. N. Prasad, and D. Ulrich, eds., Nonlinear Optical Effects in Organic Polymers (Kluwer, Dordrecht, The Netherlands, 1989).

F. Kajzar and J. D. Swalen, eds., Organic Thin Films for Waveguiding Nonlinear Optics (Gordon and Breach, Amsterdam, 1996).

G. I. Stegeman, “Applications of organic materials in third-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997), pp. 799–812.

D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987), Vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Chemical structures of poly (p-phenylenevinylene) and its derivatives. Systematic names: PPV, poly(1,4-phenylene vinylene); DPOP-PPV, poly[1,4-phenylene-1,2-bis(4-phenoxyphenyl)-vinylene]; MEH-PPV, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene]; MEH-DOO-PPV, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene-2,5-dioctyloxy-1,4-phenylene-vinylene]; TPD2-PPV (TPD(4M)-MEH-PPV), poly[1,4-phenylene-(4-methylphenyl)imino-4,4-diphenylene-(4-methylphenyl)imino-1,4-phenylene vinylene-2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene]; TPD4-PPV (TPD(4M)-MEH-M3EH-PPV), poly[1,4-phenylene-(4 methylphenyl)imino-4,4-diphenylene-(4-methylphenyl)imino-1,4-phenylene-vinylene-2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene]CO[2,5-dimethoxy-1,4-phenylene-vinylene-2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] (50:50).

Fig. 2
Fig. 2

Schematic diagrams of the experimental setups for writing submicrometer gratings in polymer films: (a) Direct illumination of a phase mask on top of the sample surface. The amplitude profile of the grating can be varied, and fabrication of the gratings occurs by means of UV photoablation and UV photobleaching with areas of as much as centimeters squared. (b) Imaging of a chromium mask by a Schwarzschild objective showing UV photoablation of homogeneous small-area profile gratings.

Fig. 3
Fig. 3

Spectra of (a) the absorption coefficient α after correction of reflection losses and (b) the refractive index of ultrathin films of PPV derivatives. The circles represent data from prism coupling in the case of MEH-PPV.

Fig. 4
Fig. 4

Spectra of (a) the absorption coefficient α and (b) the refractive index n of a fresh MEH-PPV film with a thickness of 58 nm (solid curve) and after UV irradiation at 365 nm with an intensity of 33 mW/cm2 at the sample position for 1 h (dashed curve) and 2 h (dotted curve).

Fig. 5
Fig. 5

Comparison of the linear and the nonlinear optical spectra of MEH-PPV measured at the laser wavelengths λ: (a) Linear attenuation loss αgw(λ) determined from prism coupling at low intensity (filled circles) and from waveguide-loss experiments (open diamonds). (b) Comparison of dispersions of α2 from nonlinear prism coupling (filled circles) and Im χ(3) from two-photon excitation fluorescence spectra (open triangles). The error bars of the Im χ(3)-data are similar to the symbol size. (c) Dispersion of n2 from nonlinear prism coupling.

Fig. 6
Fig. 6

Grating structures in MEH-PPV waveguides with a thickness of 590 nm on quartz substrates and generated by UV photoablation. The applied wavelength, pulse duration, fluence, number of pulses, and grating period, respectively, were (a) 248 nm, 500 fs, 11.2 mJ/cm2, 50, and 386 nm; (b) 193 nm, 20 ns, 350 mJ/cm2, 2, and 1.0 µm; (c) 355 nm, 40 ps, 7 mJ/cm2, 100, and 720 nm.

Fig. 7
Fig. 7

Cw spectra for (a) a weak grating and (b) a strong grating. The effects of linear loss α are included, but TPA and Kerr nonlinearity are not. The filled circles indicate the wavelengths at which the simulations of the pulse transmission as a function of the incident pulse intensity of Fig. 8 are carried out to demonstrate the switching process.

Fig. 8
Fig. 8

Transmission plotted as a function of intensity for 100-ps pulses in a weak grating (solid curve) and for 30-ps pulses in a strong grating (dashed curve). Switching for the 100-ps pulse occurs at approximately 300 MW/cm2, whereas for the 30-ps pulse it occurs at approximately 200 MW/cm2. These simulations include TPA and nonlinearity.

Fig. 9
Fig. 9

Output pulses for the strong grating for incident intensities of 200 MW/cm2 (solid curve) and 325 MW/cm2 (dashed curve). The intensities are normalized to the incident pulses, and the delay is calculated from the time that the peak of the incident pulse entered the system.

Tables (2)

Tables Icon

Table 1 Coefficients and Parameters of the PPV Derivatives

Tables Icon

Table 2 Materials Comparison for Nonlinear Waveguide Applications

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n2(λ)=1+i=12 aiλ2λ2-λi2
I(x, y, t)=I0 exp-x22σx2-y22σx2-t22σt2,
I0=Ep(2π)3/2σxσyσt
0=±i f±z+i n0c f±t+κ(z)f+σ(z)+i α2f±+n2 ω0c+i α22(|f±|2+2|f|2)f±,
κ(z)=κ0 exp-4 (ln 2)z-L/2zFW2,

Metrics