Abstract

Holographic depth-gated imaging is investigated with perpendicular-field multiple-quantum-well optically addressed spatial light modulators. It is shown that the signal-to-noise ratio of the image can be improved by use of the spatial light modulators in lock-in mode.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
    [CrossRef] [PubMed]
  3. M. Bashkansky, M. D. Duncan, M. Kahn, D. Lewis III, and J. Reintjes, “Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography,” Opt. Lett. 22, 61–63 (1997).
    [CrossRef] [PubMed]
  4. J. Reintjes and M. Bashkansky, “Low cost, high resolution optical technique detects microscopic subsurface defects in ceramics,” Mater Technol. 12, 43–46 (1997).
  5. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, Opt. Express 3, 219–229 (1998), http://epubs.osa.org/opticsexpress.
    [CrossRef] [PubMed]
  6. H. J. Gerritsen, “Holography and four-wave mixing to see through the skin,” Proc. SPIE 519, 128–131 (1984).
    [CrossRef]
  7. M. Bashkansky, C. Adler, and J. Reintjes, “Coherently amplified Raman polarization gate for imaging through scattering media,” Opt. Lett. 19, 350–352 (1994).
    [CrossRef] [PubMed]
  8. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef] [PubMed]
  9. K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
    [CrossRef] [PubMed]
  10. R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
    [CrossRef]
  11. R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Exp. 2, 439–448 (1998).
    [CrossRef]
  12. M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
    [CrossRef]
  13. Q. Wang, R. M. Brubaker, D. D. Nolte and M. R. Melloch, “Photorefractive quantum-wells-transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
    [CrossRef]
  14. S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
    [CrossRef]
  15. W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044–1046 (1995).
    [CrossRef]
  16. W. S. Rabinovich, R. Mahon, S. R. Bowman, D. S. Katzer, and K. Ikossi-Anastasiou, “Lock-in holography using optically addressed multiple quantum well light modulators,” Opt. Lett. 24, 1109–1111 (1999).
    [CrossRef]
  17. W. S. Rabinovich, S. R. Bowman, A. G. Walsh, R. Mahon, C. L. Adler, and D. S. Katzer, “Grey scale response of multiple quantum well spatial light modulators,” J. Opt. Soc. Am. B 13, 2235–2241 (1996).
    [CrossRef]
  18. S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators,” J. Opt. Soc. Am. B 15, 640–647 (1998).
    [CrossRef]

2000

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

1999

1998

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, Opt. Express 3, 219–229 (1998), http://epubs.osa.org/opticsexpress.
[CrossRef] [PubMed]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Exp. 2, 439–448 (1998).
[CrossRef]

S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators,” J. Opt. Soc. Am. B 15, 640–647 (1998).
[CrossRef]

1997

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

M. Bashkansky, M. D. Duncan, M. Kahn, D. Lewis III, and J. Reintjes, “Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography,” Opt. Lett. 22, 61–63 (1997).
[CrossRef] [PubMed]

J. Reintjes and M. Bashkansky, “Low cost, high resolution optical technique detects microscopic subsurface defects in ceramics,” Mater Technol. 12, 43–46 (1997).

1996

1995

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044–1046 (1995).
[CrossRef]

1994

S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
[CrossRef]

M. Bashkansky, C. Adler, and J. Reintjes, “Coherently amplified Raman polarization gate for imaging through scattering media,” Opt. Lett. 19, 350–352 (1994).
[CrossRef] [PubMed]

1992

1991

1989

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

1984

H. J. Gerritsen, “Holography and four-wave mixing to see through the skin,” Proc. SPIE 519, 128–131 (1984).
[CrossRef]

Abramson, N. H.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

Adler, C.

Adler, C. L.

Barry, N. P.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

Bashkansky, M.

Beadie, G.

Bjelkhagen, H.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Bowman, S. R.

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Brubaker, R. M.

Chen, H.

Chen, Y.

Dainty, J. C.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

Dilworth, D.

Duncan, M. D.

French, P. M. W.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Exp. 2, 439–448 (1998).
[CrossRef]

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Gerritsen, H. J.

H. J. Gerritsen, “Holography and four-wave mixing to see through the skin,” Proc. SPIE 519, 128–131 (1984).
[CrossRef]

Hyde, S. C. W.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

Ikossi-Anastasiou, K.

Izatt, J. A.

Jones, R.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Exp. 2, 439–448 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

Kahn, M.

Katzer, D. S.

Kirkpatrick, S. M.

Kulkarni, M. D.

Kwolek, K. M.

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Exp. 2, 439–448 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

Kyono, C. S.

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044–1046 (1995).
[CrossRef]

S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
[CrossRef]

Leith, E.

Lewis III, D.

Lopez, J.

Mahon, R.

Melloch, M. R.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Exp. 2, 439–448 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

Q. Wang, R. M. Brubaker, D. D. Nolte and M. R. Melloch, “Photorefractive quantum-wells-transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
[CrossRef]

Nolte, D. D.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Exp. 2, 439–448 (1998).
[CrossRef]

Q. Wang, R. M. Brubaker, D. D. Nolte and M. R. Melloch, “Photorefractive quantum-wells-transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
[CrossRef]

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Rabinovich, W. S.

Reintjes, J.

Rollins, A. M.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Serafin, J.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Spears, K. G.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Tziraki, M.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Exp. 2, 439–448 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

Ung-arunyawee, R.

Valdmanis, J.

Walsh, A. G.

Wang, Q.

Yazdanfar, S.

Zhu, X.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

Appl. Phys. B

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[CrossRef]

Appl. Phys. Lett.

S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
[CrossRef]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044–1046 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998).
[CrossRef]

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

IEEE Trans. Biomed. Eng.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Mater Technol.

J. Reintjes and M. Bashkansky, “Low cost, high resolution optical technique detects microscopic subsurface defects in ceramics,” Mater Technol. 12, 43–46 (1997).

Opt. Exp.

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Exp. 2, 439–448 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

H. J. Gerritsen, “Holography and four-wave mixing to see through the skin,” Proc. SPIE 519, 128–131 (1984).
[CrossRef]

Science

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Conventional pulse recorded for 500-Hz modulation of the SLM reverse-bias 15-V pulse. The power in the read beam was measured at 15.6 µW, the reference beam was 30.8 µW, and the signal beam was 10.6 µW.

Fig. 2
Fig. 2

Schematic is shown of the experiment used to investigate holographic lock-in. The read laser is a 853-nm distributed-feedback (DFB) laser, and the write beams are derived from a superluminescent diode centered at 850 nm. Wave plates (quarter-wave plate, QWP; half-wave plate, HWP) are indicated, and image-relay lens pairs (L1 and L2) are shown. The voltage pulse applied to the SLM is synchronized with the mechanical chopper, which modulates the intensity of the signal beam.

Fig. 3
Fig. 3

Diffracted pulse train recorded for 3.8-kHz modulation of the signal beam and of the SLM reverse-bias 15-V pulse. The power in the read beam was measured at 15.6 µW, the reference beam was 30.8 µW, and the signal beam was 7.7 µW.

Fig. 4
Fig. 4

Comparison is made between the holographic lock-in and conventional diffraction from the SLM. The diffracted signal, as measured by the electronic lock-in amplifier, is shown as a function of the ratio of power in the signal beam to the power in the reference beam of the SLM write beams. A mirror is in place of the object, and different visibility levels are simulated with the addition of neutral-density filters in the signal-beam path. The SLM was pulsed with a reverse bias of 12 V. The power in the read beam was measured at 18.5 µW, the reference beam was 71 µW, and the signal beam was varied between 7.2 µW and 0.054 µW.

Fig. 5
Fig. 5

Image slices were recorded as an aluminum object, machined to have 100-µm-deep steps, was translated longitudinally in the signal beam. The power in the reference beam was three times larger than that in the signal beam. The reconstituted image was produced by stacking the individual images recorded at 10-µm intervals and use of visualization software to render the three-dimensional image.

Fig. 6
Fig. 6

Comparison is made between the holographic lock-in and conventional diffraction from the SLM where a hologram is formed of a ring segment of the stepped object. Different visibility levels are simulated with the addition of neutral-density filters in the signal-beam path. The SLM was pulsed with a reverse bias of 12 V. The power in the read beam was measured at 4 µW, the reference beam was 7 µW, and the signal beam was varied between 4 µW and 0.008 µW.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

VG=2IRISφt,
ID=4IRISIRDφ2ηt2,
tmax=V0(IR+IRD)ϕ,
ID=2IRIRDISηV02(IR+IRD)2.
ID=ISηV022.
tmax=V02IRISϕ.
IRDηV022.
IRD max=2NDPminSAMQW,
IRD max=V04ϕfMQW.
ID=2IRD max2Isϕ2ηTFrame2,
ID=ηV02[fMQWTFrame]28Is.
PS min=8PminηV02[fMQWTFrame]2.

Metrics