Abstract

We define photonic nanopatterns of a sample as images recorded by scanning near-field optical microscopy with a locally excited electric dipole as a probe. This photonic nanopattern can be calculated by use of the Green’s dyadic technique. Here, we show that scanning near-field optical microscopy images of well-defined gold triangles taken with the tetrahedral tip as a probe show a close similarity to the photonic nanopattern of this nanostructure with an electric dipole at a distance of 15 nm to the sample and tilted 45° with respect to the scanning plane.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. C. Fischer, “Scanning near-field optical microscopy,” in Scanning Probe Microscopy; Analytical Methods, R. Wiesendanger, ed. (Springer-Verlag, Berlin, 1998).
  2. E. H. Synge, “A suggested method for extending microscopic resolution into the ultramicroscopic region,” Philos. Mag. 6, 356–362 (1928).
  3. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
    [CrossRef] [PubMed]
  4. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [CrossRef]
  5. U. C. Fischer, “Optical characteristics of 0.1 mm circular apertures in a metal film as light sources for scanning ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
    [CrossRef]
  6. A. Dereux, G. Girard, and J. C. Weeber, “Theoretical principles of near-field optical microscopies and spectroscopies,” J. Chem. Phys. 112, 7775–7789 (2000).
    [CrossRef]
  7. T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
    [CrossRef]
  8. S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Near-field optics with photonic crystals,” Appl. Phys. (N.Y.) 69, 497–500 (1999).
    [CrossRef]
  9. Shanhui Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
    [CrossRef]
  10. O. J. F. Martin, “3D simulations of the experimental signal measured in near-field optical microscopy,” J. Microsc. (Oxford) 194, 235–239 (1999).
    [CrossRef]
  11. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
    [CrossRef] [PubMed]
  12. Th. Huser, L. Novotny, Th. Lacoste, R. Eckert, and H. Heinzelmann, “Observation and analysis of near-field optical diffraction,” J. Opt. Soc. Am. A 16, 141–148 (1999).
    [CrossRef]
  13. U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near field optical microscopy at 30 nm resolution,” J. Microsc. (Oxford) 176, 231–237 (1994).
    [CrossRef]
  14. J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7784 (1997).
    [CrossRef]
  15. J. Ferber, U. C. Fischer, N. Hagedorn, and H. Fuchs, “Internal reflection mode scanning near-field optical microscopy with the tetrahedral tip on metallic samples,” Appl. Phys. A 69, 581–589 (1999).
    [CrossRef]
  16. E. Betzig and J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1428 (1993).
    [CrossRef] [PubMed]
  17. H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
    [CrossRef]
  18. U. C. Fischer, A. Dereux, and J. C. Weeber, “Controlling light confinement by excitation of localized surface plasmons,” in Near-Field Optics and Surface Plasmon Polariton, S. Kawata, ed., Top. Appl. Phys. 81, 49–69 (Springer-Verlag, Berlin, 2001).
    [CrossRef]
  19. J. Heimel, U. C. Fischer, and H. Fuchs, “SNOM/STM using a tetrahedral tip and a sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
    [CrossRef]
  20. P. Güthner, U. C. Fischer, and K. Dransfeld, “Scanning near-field acoustic microscopy,” Appl. Phys. B 48, 89–92 (1989).
    [CrossRef]
  21. K. Karraï and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
    [CrossRef]
  22. Th. Murdfield, U. C. Fischer, H. Fuchs, R. Volk, A. Michels, F. Meinen, and E. Beckman, “Acoustic and dynamic force microscopy with ultrasonic probes,” J. Vac. Sci. Technol. B 14, 877–881 (1996).
    [CrossRef]
  23. A. Naber, H.-J. Maas, K. Razavi, and U. C. Fischer, “A dynamic force distance control suited to various probes for scanning near-field optical microscopy,” Rev. Sci. Instrum. 70, 3955–3961 (1999).
    [CrossRef]
  24. A. Naber, “The tuning fork as sensor for dynamic force distance control in scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 307–310 (1999).
    [CrossRef]
  25. U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19, 881–885 (1981).
    [CrossRef]
  26. T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett. 76, 1206–1208 (2000).
    [CrossRef]
  27. U. C. Fischer, J. Heimel, H.-J. Maas, M. Hartig, S. Höppener, and H. Fuchs, “Latex bead projection nanopatterns,” Surf. Interface Anal. 33, 75–80 (2002).
    [CrossRef]
  28. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
    [CrossRef]
  29. All SNOM images are flattened in the first order line by line to subtract slow changes of the laser intensity. The contrast of SNOM images is defined as the difference from the lowest to the highest signal normalized to the mean value in the image. This normalization represents an arbitrary choice of a reference signal. The gray scale is adjusted to cover the maximal contrast in the image.
  30. C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
    [CrossRef]
  31. O. J. F. Martin, C. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
    [CrossRef] [PubMed]
  32. O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
    [CrossRef]
  33. L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
    [CrossRef]
  34. J. D. Jackson, Klassische Elektrodynamik (De Gruyter, Berlin, 1981).
  35. We have also done numerical simulations for dipoles with a different angle with respect to the surface. The best correspondence between numerical and experimental images was achieved with a dipole tilted 45° to the scanning plane. A tolerance of ±10° can be stated, in which the photonic pattern does not change significantly.
  36. One referee insisted that we cite in this context the research of Michaelis et al.38 and of Sandogdhar.39 They use a single molecule as a probe for light microscopy of a sample similar to ours but by a factor of 10 larger. Their image shows a pattern that varies with the orientation of the triangles.38 They compared the image to simulated images extracted from unpublished data of O. Martin. The calculations performed with dipolar orientations within the scanning plane or perpendicular to the scanning plane reveal photonic nanopatterns that have a characteristic pattern. The experimental images38 and the calculated im ages have the property in common that the pattern differs for different orientations of the triangles. Sandogdhar concludes that a “quantitative comparison of calculations with the experimental results could reveal the dipole orientation.” 39 No conclusion was drawn about the orientation of the dipole, and therefore it is not clear whether a photonic pattern in our sense was observed at all.
  37. G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to elec-tronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
    [CrossRef]
  38. J. Michaelis, C. Hettich, J. Mlynek, and V. Sandogdhar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
    [CrossRef] [PubMed]
  39. V. Sandogdhar, “Trends and developments in scanning near-field optical microscopy,” in Nanometer Scale Science and Technology, M. Allegrini, N. Garcia, and O. Marti, eds. (IOS Press, Washington D.C., 2001), pp. 60–115.

2002 (1)

U. C. Fischer, J. Heimel, H.-J. Maas, M. Hartig, S. Höppener, and H. Fuchs, “Latex bead projection nanopatterns,” Surf. Interface Anal. 33, 75–80 (2002).
[CrossRef]

2001 (2)

J. Heimel, U. C. Fischer, and H. Fuchs, “SNOM/STM using a tetrahedral tip and a sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
[CrossRef]

G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to elec-tronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef]

2000 (5)

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandogdhar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[CrossRef] [PubMed]

A. Dereux, G. Girard, and J. C. Weeber, “Theoretical principles of near-field optical microscopies and spectroscopies,” J. Chem. Phys. 112, 7775–7789 (2000).
[CrossRef]

T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
[CrossRef]

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett. 76, 1206–1208 (2000).
[CrossRef]

1999 (7)

A. Naber, H.-J. Maas, K. Razavi, and U. C. Fischer, “A dynamic force distance control suited to various probes for scanning near-field optical microscopy,” Rev. Sci. Instrum. 70, 3955–3961 (1999).
[CrossRef]

A. Naber, “The tuning fork as sensor for dynamic force distance control in scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 307–310 (1999).
[CrossRef]

J. Ferber, U. C. Fischer, N. Hagedorn, and H. Fuchs, “Internal reflection mode scanning near-field optical microscopy with the tetrahedral tip on metallic samples,” Appl. Phys. A 69, 581–589 (1999).
[CrossRef]

S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Near-field optics with photonic crystals,” Appl. Phys. (N.Y.) 69, 497–500 (1999).
[CrossRef]

Shanhui Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[CrossRef]

O. J. F. Martin, “3D simulations of the experimental signal measured in near-field optical microscopy,” J. Microsc. (Oxford) 194, 235–239 (1999).
[CrossRef]

Th. Huser, L. Novotny, Th. Lacoste, R. Eckert, and H. Heinzelmann, “Observation and analysis of near-field optical diffraction,” J. Opt. Soc. Am. A 16, 141–148 (1999).
[CrossRef]

1998 (1)

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[CrossRef]

1997 (3)

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7784 (1997).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

1996 (2)

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

Th. Murdfield, U. C. Fischer, H. Fuchs, R. Volk, A. Michels, F. Meinen, and E. Beckman, “Acoustic and dynamic force microscopy with ultrasonic probes,” J. Vac. Sci. Technol. B 14, 877–881 (1996).
[CrossRef]

1995 (2)

O. J. F. Martin, C. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

K. Karraï and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

1994 (1)

U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near field optical microscopy at 30 nm resolution,” J. Microsc. (Oxford) 176, 231–237 (1994).
[CrossRef]

1993 (1)

E. Betzig and J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1428 (1993).
[CrossRef] [PubMed]

1992 (1)

1989 (1)

P. Güthner, U. C. Fischer, and K. Dransfeld, “Scanning near-field acoustic microscopy,” Appl. Phys. B 48, 89–92 (1989).
[CrossRef]

1985 (1)

U. C. Fischer, “Optical characteristics of 0.1 mm circular apertures in a metal film as light sources for scanning ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
[CrossRef]

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

1981 (1)

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19, 881–885 (1981).
[CrossRef]

1972 (1)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[CrossRef] [PubMed]

1928 (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultramicroscopic region,” Philos. Mag. 6, 356–362 (1928).

Appelbaum, I.

Shanhui Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[CrossRef]

Ash, E. A.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[CrossRef] [PubMed]

Beckman, E.

Th. Murdfield, U. C. Fischer, H. Fuchs, R. Volk, A. Michels, F. Meinen, and E. Beckman, “Acoustic and dynamic force microscopy with ultrasonic probes,” J. Vac. Sci. Technol. B 14, 877–881 (1996).
[CrossRef]

Betzig, E.

Bielefeldt, H.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Chiba, N.

T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
[CrossRef]

Chicane, C.

G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to elec-tronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef]

Chichester, J.

E. Betzig and J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1428 (1993).
[CrossRef] [PubMed]

David, T.

G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to elec-tronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Dereux, A.

G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to elec-tronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef]

A. Dereux, G. Girard, and J. C. Weeber, “Theoretical principles of near-field optical microscopies and spectroscopies,” J. Chem. Phys. 112, 7775–7789 (2000).
[CrossRef]

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

U. C. Fischer, A. Dereux, and J. C. Weeber, “Controlling light confinement by excitation of localized surface plasmons,” in Near-Field Optics and Surface Plasmon Polariton, S. Kawata, ed., Top. Appl. Phys. 81, 49–69 (Springer-Verlag, Berlin, 2001).
[CrossRef]

des Francs, G. Colas

G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to elec-tronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef]

Dransfeld, K.

P. Güthner, U. C. Fischer, and K. Dransfeld, “Scanning near-field acoustic microscopy,” Appl. Phys. B 48, 89–92 (1989).
[CrossRef]

Durkan, C.

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett. 76, 1206–1208 (2000).
[CrossRef]

Eckert, R.

Fan, Shanhui

Shanhui Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[CrossRef]

Ferber, J.

J. Ferber, U. C. Fischer, N. Hagedorn, and H. Fuchs, “Internal reflection mode scanning near-field optical microscopy with the tetrahedral tip on metallic samples,” Appl. Phys. A 69, 581–589 (1999).
[CrossRef]

Fischer, U. C.

U. C. Fischer, J. Heimel, H.-J. Maas, M. Hartig, S. Höppener, and H. Fuchs, “Latex bead projection nanopatterns,” Surf. Interface Anal. 33, 75–80 (2002).
[CrossRef]

J. Heimel, U. C. Fischer, and H. Fuchs, “SNOM/STM using a tetrahedral tip and a sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
[CrossRef]

J. Ferber, U. C. Fischer, N. Hagedorn, and H. Fuchs, “Internal reflection mode scanning near-field optical microscopy with the tetrahedral tip on metallic samples,” Appl. Phys. A 69, 581–589 (1999).
[CrossRef]

A. Naber, H.-J. Maas, K. Razavi, and U. C. Fischer, “A dynamic force distance control suited to various probes for scanning near-field optical microscopy,” Rev. Sci. Instrum. 70, 3955–3961 (1999).
[CrossRef]

J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7784 (1997).
[CrossRef]

Th. Murdfield, U. C. Fischer, H. Fuchs, R. Volk, A. Michels, F. Meinen, and E. Beckman, “Acoustic and dynamic force microscopy with ultrasonic probes,” J. Vac. Sci. Technol. B 14, 877–881 (1996).
[CrossRef]

U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near field optical microscopy at 30 nm resolution,” J. Microsc. (Oxford) 176, 231–237 (1994).
[CrossRef]

P. Güthner, U. C. Fischer, and K. Dransfeld, “Scanning near-field acoustic microscopy,” Appl. Phys. B 48, 89–92 (1989).
[CrossRef]

U. C. Fischer, “Optical characteristics of 0.1 mm circular apertures in a metal film as light sources for scanning ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
[CrossRef]

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19, 881–885 (1981).
[CrossRef]

U. C. Fischer, A. Dereux, and J. C. Weeber, “Controlling light confinement by excitation of localized surface plasmons,” in Near-Field Optics and Surface Plasmon Polariton, S. Kawata, ed., Top. Appl. Phys. 81, 49–69 (Springer-Verlag, Berlin, 2001).
[CrossRef]

Fuchs, H.

U. C. Fischer, J. Heimel, H.-J. Maas, M. Hartig, S. Höppener, and H. Fuchs, “Latex bead projection nanopatterns,” Surf. Interface Anal. 33, 75–80 (2002).
[CrossRef]

J. Heimel, U. C. Fischer, and H. Fuchs, “SNOM/STM using a tetrahedral tip and a sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
[CrossRef]

J. Ferber, U. C. Fischer, N. Hagedorn, and H. Fuchs, “Internal reflection mode scanning near-field optical microscopy with the tetrahedral tip on metallic samples,” Appl. Phys. A 69, 581–589 (1999).
[CrossRef]

J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7784 (1997).
[CrossRef]

Th. Murdfield, U. C. Fischer, H. Fuchs, R. Volk, A. Michels, F. Meinen, and E. Beckman, “Acoustic and dynamic force microscopy with ultrasonic probes,” J. Vac. Sci. Technol. B 14, 877–881 (1996).
[CrossRef]

U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near field optical microscopy at 30 nm resolution,” J. Microsc. (Oxford) 176, 231–237 (1994).
[CrossRef]

Fujimura, T.

T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
[CrossRef]

Garcia-Parajo, M. F.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

Gersen, H.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

Girard, C.

G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to elec-tronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef]

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

Girard, G.

A. Dereux, G. Girard, and J. C. Weeber, “Theoretical principles of near-field optical microscopies and spectroscopies,” J. Chem. Phys. 112, 7775–7789 (2000).
[CrossRef]

Graf, M.

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett. 76, 1206–1208 (2000).
[CrossRef]

Grober, R. D.

K. Karraï and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

Güthner, P.

P. Güthner, U. C. Fischer, and K. Dransfeld, “Scanning near-field acoustic microscopy,” Appl. Phys. B 48, 89–92 (1989).
[CrossRef]

Hagedorn, N.

J. Ferber, U. C. Fischer, N. Hagedorn, and H. Fuchs, “Internal reflection mode scanning near-field optical microscopy with the tetrahedral tip on metallic samples,” Appl. Phys. A 69, 581–589 (1999).
[CrossRef]

Harris, T. D.

Hartig, M.

U. C. Fischer, J. Heimel, H.-J. Maas, M. Hartig, S. Höppener, and H. Fuchs, “Latex bead projection nanopatterns,” Surf. Interface Anal. 33, 75–80 (2002).
[CrossRef]

Hecht, B.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

Heimel, J.

U. C. Fischer, J. Heimel, H.-J. Maas, M. Hartig, S. Höppener, and H. Fuchs, “Latex bead projection nanopatterns,” Surf. Interface Anal. 33, 75–80 (2002).
[CrossRef]

J. Heimel, U. C. Fischer, and H. Fuchs, “SNOM/STM using a tetrahedral tip and a sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
[CrossRef]

Heinzelmann, H.

Hettich, C.

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandogdhar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[CrossRef] [PubMed]

Höppener, S.

U. C. Fischer, J. Heimel, H.-J. Maas, M. Hartig, S. Höppener, and H. Fuchs, “Latex bead projection nanopatterns,” Surf. Interface Anal. 33, 75–80 (2002).
[CrossRef]

Huser, Th.

Imada, A.

T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
[CrossRef]

Inouye, Y.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Itoh, T.

T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
[CrossRef]

Joannopoulos, J. D.

Shanhui Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett. 76, 1206–1208 (2000).
[CrossRef]

Karraï, K.

K. Karraï and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

Koda, T.

T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
[CrossRef]

Koglin, J.

J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7784 (1997).
[CrossRef]

U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near field optical microscopy at 30 nm resolution,” J. Microsc. (Oxford) 176, 231–237 (1994).
[CrossRef]

Kuipers, L.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

Lacoste, Th.

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Maas, H.-J.

U. C. Fischer, J. Heimel, H.-J. Maas, M. Hartig, S. Höppener, and H. Fuchs, “Latex bead projection nanopatterns,” Surf. Interface Anal. 33, 75–80 (2002).
[CrossRef]

A. Naber, H.-J. Maas, K. Razavi, and U. C. Fischer, “A dynamic force distance control suited to various probes for scanning near-field optical microscopy,” Rev. Sci. Instrum. 70, 3955–3961 (1999).
[CrossRef]

Magnitskii, S. A.

S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Near-field optics with photonic crystals,” Appl. Phys. (N.Y.) 69, 497–500 (1999).
[CrossRef]

Martin, O. J. F.

O. J. F. Martin, “3D simulations of the experimental signal measured in near-field optical microscopy,” J. Microsc. (Oxford) 194, 235–239 (1999).
[CrossRef]

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

Meinen, F.

Th. Murdfield, U. C. Fischer, H. Fuchs, R. Volk, A. Michels, F. Meinen, and E. Beckman, “Acoustic and dynamic force microscopy with ultrasonic probes,” J. Vac. Sci. Technol. B 14, 877–881 (1996).
[CrossRef]

Michaelis, J.

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandogdhar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[CrossRef] [PubMed]

Michels, A.

Th. Murdfield, U. C. Fischer, H. Fuchs, R. Volk, A. Michels, F. Meinen, and E. Beckman, “Acoustic and dynamic force microscopy with ultrasonic probes,” J. Vac. Sci. Technol. B 14, 877–881 (1996).
[CrossRef]

Miyazaki, H.

T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
[CrossRef]

Mlynek, J.

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandogdhar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[CrossRef] [PubMed]

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett. 76, 1206–1208 (2000).
[CrossRef]

Muramatsu, H.

T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
[CrossRef]

Murdfield, Th.

Th. Murdfield, U. C. Fischer, H. Fuchs, R. Volk, A. Michels, F. Meinen, and E. Beckman, “Acoustic and dynamic force microscopy with ultrasonic probes,” J. Vac. Sci. Technol. B 14, 877–881 (1996).
[CrossRef]

Naber, A.

A. Naber, H.-J. Maas, K. Razavi, and U. C. Fischer, “A dynamic force distance control suited to various probes for scanning near-field optical microscopy,” Rev. Sci. Instrum. 70, 3955–3961 (1999).
[CrossRef]

A. Naber, “The tuning fork as sensor for dynamic force distance control in scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 307–310 (1999).
[CrossRef]

Nicholls, G.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[CrossRef] [PubMed]

Novotny, L.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

Th. Huser, L. Novotny, Th. Lacoste, R. Eckert, and H. Heinzelmann, “Observation and analysis of near-field optical diffraction,” J. Opt. Soc. Am. A 16, 141–148 (1999).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

Ohtaka, K.

T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
[CrossRef]

Peyrade, D.

G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to elec-tronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef]

Piller, N. B.

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[CrossRef]

Pohl, D. W.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Razavi, K.

A. Naber, H.-J. Maas, K. Razavi, and U. C. Fischer, “A dynamic force distance control suited to various probes for scanning near-field optical microscopy,” Rev. Sci. Instrum. 70, 3955–3961 (1999).
[CrossRef]

Sandogdhar, V.

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandogdhar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[CrossRef] [PubMed]

Sandoghdar, V.

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett. 76, 1206–1208 (2000).
[CrossRef]

Shimada, R.

T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
[CrossRef]

Synge, E. H.

E. H. Synge, “A suggested method for extending microscopic resolution into the ultramicroscopic region,” Philos. Mag. 6, 356–362 (1928).

Tarasishin, A. V.

S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Near-field optics with photonic crystals,” Appl. Phys. (N.Y.) 69, 497–500 (1999).
[CrossRef]

Trautman, J. K.

van Hulst, N. F.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

Veerman, J. A.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

Volk, R.

Th. Murdfield, U. C. Fischer, H. Fuchs, R. Volk, A. Michels, F. Meinen, and E. Beckman, “Acoustic and dynamic force microscopy with ultrasonic probes,” J. Vac. Sci. Technol. B 14, 877–881 (1996).
[CrossRef]

Weeber, J. C.

G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to elec-tronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef]

A. Dereux, G. Girard, and J. C. Weeber, “Theoretical principles of near-field optical microscopies and spectroscopies,” J. Chem. Phys. 112, 7775–7789 (2000).
[CrossRef]

U. C. Fischer, A. Dereux, and J. C. Weeber, “Controlling light confinement by excitation of localized surface plasmons,” in Near-Field Optics and Surface Plasmon Polariton, S. Kawata, ed., Top. Appl. Phys. 81, 49–69 (Springer-Verlag, Berlin, 2001).
[CrossRef]

Weiner, J. S.

Wolfe, R.

Zheltikov, A. M.

S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Near-field optics with photonic crystals,” Appl. Phys. (N.Y.) 69, 497–500 (1999).
[CrossRef]

Zingsheim, H. P.

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19, 881–885 (1981).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (N.Y.) (1)

S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Near-field optics with photonic crystals,” Appl. Phys. (N.Y.) 69, 497–500 (1999).
[CrossRef]

Appl. Phys. A (1)

J. Ferber, U. C. Fischer, N. Hagedorn, and H. Fuchs, “Internal reflection mode scanning near-field optical microscopy with the tetrahedral tip on metallic samples,” Appl. Phys. A 69, 581–589 (1999).
[CrossRef]

Appl. Phys. B (1)

P. Güthner, U. C. Fischer, and K. Dransfeld, “Scanning near-field acoustic microscopy,” Appl. Phys. B 48, 89–92 (1989).
[CrossRef]

Appl. Phys. Lett. (4)

K. Karraï and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett. 76, 1206–1208 (2000).
[CrossRef]

Shanhui Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

J. Appl. Phys. (2)

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

J. Chem. Phys. (1)

A. Dereux, G. Girard, and J. C. Weeber, “Theoretical principles of near-field optical microscopies and spectroscopies,” J. Chem. Phys. 112, 7775–7789 (2000).
[CrossRef]

J. Lumin. (1)

T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, N. Chiba, H. Muramatsu, H. Miyazaki, and K. Ohtaka, “Near-field optical images of ordered polystyrene particle layers and their photonic band effect,” J. Lumin. 87–89, 954–956 (2000).
[CrossRef]

J. Microsc. (Oxford) (4)

O. J. F. Martin, “3D simulations of the experimental signal measured in near-field optical microscopy,” J. Microsc. (Oxford) 194, 235–239 (1999).
[CrossRef]

U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near field optical microscopy at 30 nm resolution,” J. Microsc. (Oxford) 176, 231–237 (1994).
[CrossRef]

J. Heimel, U. C. Fischer, and H. Fuchs, “SNOM/STM using a tetrahedral tip and a sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
[CrossRef]

A. Naber, “The tuning fork as sensor for dynamic force distance control in scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 307–310 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. (1)

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19, 881–885 (1981).
[CrossRef]

J. Vac. Sci. Technol. B (2)

Th. Murdfield, U. C. Fischer, H. Fuchs, R. Volk, A. Michels, F. Meinen, and E. Beckman, “Acoustic and dynamic force microscopy with ultrasonic probes,” J. Vac. Sci. Technol. B 14, 877–881 (1996).
[CrossRef]

U. C. Fischer, “Optical characteristics of 0.1 mm circular apertures in a metal film as light sources for scanning ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
[CrossRef]

Nature (2)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[CrossRef] [PubMed]

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandogdhar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[CrossRef] [PubMed]

Philos. Mag. (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultramicroscopic region,” Philos. Mag. 6, 356–362 (1928).

Phys. Rev. B (1)

J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7784 (1997).
[CrossRef]

Phys. Rev. E (1)

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to elec-tronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

Rep. Prog. Phys. (1)

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Naber, H.-J. Maas, K. Razavi, and U. C. Fischer, “A dynamic force distance control suited to various probes for scanning near-field optical microscopy,” Rev. Sci. Instrum. 70, 3955–3961 (1999).
[CrossRef]

Science (1)

E. Betzig and J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1428 (1993).
[CrossRef] [PubMed]

Surf. Interface Anal. (1)

U. C. Fischer, J. Heimel, H.-J. Maas, M. Hartig, S. Höppener, and H. Fuchs, “Latex bead projection nanopatterns,” Surf. Interface Anal. 33, 75–80 (2002).
[CrossRef]

Top. Appl. Phys. (1)

U. C. Fischer, A. Dereux, and J. C. Weeber, “Controlling light confinement by excitation of localized surface plasmons,” in Near-Field Optics and Surface Plasmon Polariton, S. Kawata, ed., Top. Appl. Phys. 81, 49–69 (Springer-Verlag, Berlin, 2001).
[CrossRef]

Other (6)

U. C. Fischer, “Scanning near-field optical microscopy,” in Scanning Probe Microscopy; Analytical Methods, R. Wiesendanger, ed. (Springer-Verlag, Berlin, 1998).

All SNOM images are flattened in the first order line by line to subtract slow changes of the laser intensity. The contrast of SNOM images is defined as the difference from the lowest to the highest signal normalized to the mean value in the image. This normalization represents an arbitrary choice of a reference signal. The gray scale is adjusted to cover the maximal contrast in the image.

J. D. Jackson, Klassische Elektrodynamik (De Gruyter, Berlin, 1981).

We have also done numerical simulations for dipoles with a different angle with respect to the surface. The best correspondence between numerical and experimental images was achieved with a dipole tilted 45° to the scanning plane. A tolerance of ±10° can be stated, in which the photonic pattern does not change significantly.

One referee insisted that we cite in this context the research of Michaelis et al.38 and of Sandogdhar.39 They use a single molecule as a probe for light microscopy of a sample similar to ours but by a factor of 10 larger. Their image shows a pattern that varies with the orientation of the triangles.38 They compared the image to simulated images extracted from unpublished data of O. Martin. The calculations performed with dipolar orientations within the scanning plane or perpendicular to the scanning plane reveal photonic nanopatterns that have a characteristic pattern. The experimental images38 and the calculated im ages have the property in common that the pattern differs for different orientations of the triangles. Sandogdhar concludes that a “quantitative comparison of calculations with the experimental results could reveal the dipole orientation.” 39 No conclusion was drawn about the orientation of the dipole, and therefore it is not clear whether a photonic pattern in our sense was observed at all.

V. Sandogdhar, “Trends and developments in scanning near-field optical microscopy,” in Nanometer Scale Science and Technology, M. Allegrini, N. Garcia, and O. Marti, eds. (IOS Press, Washington D.C., 2001), pp. 60–115.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

15-nm-thick gold projection sample embedded in polycarbonate: scan size is 400 nm×400 nm. (a) SFM image; the gray scale corresponds to 6 nm. (b) SNOM image; the maximum contrast in this image is 0.3%.

Fig. 3
Fig. 3

Image of a sample with a gold structure of 20 nm thickness showing the effect of a different orientation of the triangles with respect to the probing tip: (a) SFM image; scan size 480 nm×480 nm; the gray scale corresponds to a height of 4.3 nm. (b) Simultaneously recorded SNOM image; the image contrast is 1%.

Fig. 4
Fig. 4

(a) Scheme of the T-tip attached to a quartz tuning fork. The special edge K1 is tilted 45° to the sample surface. (b) The tilted dipole model: the dipole induces a mirror dipole that changes its orientation at different sites above the protrusion.

Fig. 5
Fig. 5

Gold projection sample embedded in PC. The scan size is 480 nm×480 nm. (a) SFM image; the gray scale corresponds to 4.3 nm. (b) Simultaneously recorded SNOM image (image contrast is 1%). (c), (e) Enlarged areas of (a) and (b), respectively. (d) Numerical object build up with (5 nm)3 gold cells with a dielectric function =-8.80+i1.09. (f) Simulated SNOM image of the numerical object described in (d), the scanning dipole being tilted by 45° with respect to the sample surface and pointing into the negative y and positive z directions.

Fig. 6
Fig. 6

(a), (b) Enlarged areas of Fig. 3. The scan size is 300 nm×210 nm and corresponds to the upper-right rectangle displayed simultaneously in Figs. 3(a) and 3(b). (c) Profile of the numerical sample. (d) Simulated SNOM image of the object shown in (c). The orientation of the dipole is similar to that used for Fig. 5(f).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(rk)=lK(rk, rl, ω)E0(rl),
K=(1-G0V)-1,
V=ω2c2Δ1,
E0(Rp)(rl)=ω2μ0G0(rl, Rp)p.

Metrics