Abstract

We report on the use of several complementary techniques for the optical characterization of semiconductor waveguides for parametric generation. Grating-assisted distributed coupling, x-ray reflectometry, and surface-emitting second-harmonic generation allowed us to evaluate the effective indices of the guided modes, the thickness of each constituent layer, and the modal birefringences of a multilayer AlGaAs/AlAs waveguide, respectively. With the experimental accuracy afforded by these techniques we could precisely infer the bulk refractive indices of various films to comply with the strict requirements for phase-matched guided-wave devices.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  2. C. F. Klingshirn, Semiconductor Optics (Springer-Verlag, Berlin, 1997).
  3. B. Di Bartolo, ed., Ultrafast Dynamics of Quantum Systems: Physical Processes and Spectroscopic Techniques, Vol. B372 of NATO ASI Series (Plenum, New York, 1997).
    [CrossRef]
  4. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  5. D. Zheng, A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, R. L. Byer, and K. L. Vodopyanov, “16-μm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs,” Opt. Lett. 23, 1010–1012 (1998).
    [CrossRef]
  6. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic χ(2) domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
    [CrossRef]
  7. A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
    [CrossRef]
  8. S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “AlGaAs QPM waveguides fabricated by GaAs/Ge/GaAs (100) sublattice reversal epitaxy,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper CFA5, p. 365.
  9. V. Berger, “Photonic crystals for nonlinear optical frequency conversion,” in Confined Photon Systems, H. Benisty, J. Gèrard, R. Houdrè, J. Rarity, and C. Weisbuch, eds. (Springer-Verlag, Berlin, 1999), pp. 366–392.
  10. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef] [PubMed]
  11. S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion flattened fiber,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
    [CrossRef]
  12. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
    [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).
  14. P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurement of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
    [CrossRef]
  15. R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21, 581–583 (1985).
    [CrossRef]
  16. W. P. Wong and K. S. Chiang, “Design of optical strip-loaded waveguides with zero modal birefringence,” J. Lightwave Technol. 16, 1240–1244 (1998).
    [CrossRef]
  17. K. Inagaki and Y. Mizuguchi, “Optical signal processing beam forming network for steerable multibeam antenna,” presented at the Asia-Pacific Microwave Conference, Yokohama, Japan, December 8–11, 1998.
  18. A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
    [CrossRef]
  19. S. P. Hegarty, G. Huyet, P. Porta, J. G. McInerney, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Transverse-mode structure and pattern formation in oxide-confined vertical-cavity semiconductor lasers,” J. Opt. Soc. Am. B 16, 2060–2071 (1999).
    [CrossRef]
  20. G. Leo, V. Berger, C. OwYang, and J. Nagle, “Parametric fluorescence in oxidized AlGaAs waveguides,” J. Opt. Soc. Am. B 16, 1597–1602 (1999).
    [CrossRef]
  21. M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 59–63 (1974).
    [CrossRef]
  22. G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
    [CrossRef]
  23. X. Mai, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, and C. T. Seaton, “Simple versatile method for fabricating guided-wave gratings,” Appl. Opt. 24, 3155–3161 (1985).
    [CrossRef] [PubMed]
  24. R. G. Kaufman, G. R. Hulse, K. A. Stair, T. E. Bird, G. P. Devane, and A. L. Moretti, “Index of refraction ofGaAs/AlxGa1−xAs multiple quantum wells with an applied electric field using the grating coupling technique,” J. Appl. Phys. 77, 1747–1752 (1995).
    [CrossRef]
  25. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
    [CrossRef]
  26. B. Vidal and P. Vincent, “Metallic multilayers for x rays using classical thin-film theory,” Appl. Opt. 23, 1794–1801 (1984).
    [CrossRef] [PubMed]
  27. H. Kiessig, “Interferenz von Röntgenstrahlen an dunnen Schichten,” Ann. Phys. (Leipzig) 10, 769–772 (1931).
    [CrossRef]
  28. F. Bridou and B. Pardo, “Use of Fourier transform in grazing x-rays reflectometry,” J. Phys. III 4, 1523–1531 (1994).
  29. R. Stolte and R. Ulrich, “Electro-optic and thermo-optic measurements of birefringence of LiNbO3 waveguides,” Opt. Lett. 20, 142–144 (1995).
    [CrossRef] [PubMed]
  30. R. Eckhardt and R. Ulrich, “Mode-beating spectroscopy in a few-mode optical guide,” Appl. Phys. Lett. 63, 284–286 (1993).
    [CrossRef]
  31. D. Johlen, G. Stolze, H. Renner, and E. Brinkmeyer, “Measurement of the birefringence of UV-written channel silica waveguides by magnetooptic polarization-mode coupling,” J. Lightwave Technol. 18, 185–192 (2000).
    [CrossRef]
  32. A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587–2589 (1997).
    [CrossRef]
  33. Z. Qi, K. Itoh, and M. Murabayashi, “Measurement of the modal birefringence of single-mode K+ ion-exchanged planar waveguides with polarimetric interferometry,” Appl. Opt. 39, 5750–5754 (2000).
    [CrossRef]
  34. W. W. Hu, K. Inagaki, and Y. Mizuguchi, “Measurement of birefringence in integrated optical waveguides by use of a microwave-modulated optical wave,” Opt. Lett. 26, 193–195 (2001).
    [CrossRef]
  35. P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
    [CrossRef]
  36. D. Vakhshoori, M. C. Wu, and S. Wang, “Surface-emitting second-harmonic generator for waveguide study,” Appl. Phys. Lett. 52, 422–424 (1988).
    [CrossRef]
  37. P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Čerenkov radiation from a thin film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
    [CrossRef]
  38. G. Leo, C. Caldarella, G. Assanto, O. Durand, A. De Rossi, M. Calligaro, X. Marcadet, and V. Berger, “Characterization of AlGaAs waveguides for three-wave mixing,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 2000 OSA Technical-Digest Series (Optical Society of America, Washington, D.C., 2000), paper CFA2, p. 363.
  39. N. D. Whitbread and P. N. Robson, “Theoretical analysis of passive visible surface-emitting second-harmonic generators,” IEEE J. Quantum Electron. 30, 139–147 (1994).
    [CrossRef]
  40. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  41. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, 1996), pp. 408–412.
  42. S. Adachi, “GaAs, AlAs, and AlGaAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R27 (1985).
    [CrossRef]
  43. A. N. Pykthin and A. D. Yas’kov, “Dispersion of the refractive index of semiconductors with diamond and zinc-blende structure,” Sov. Phys. Semicond. 12, 622–625 (1978).
  44. R. E. Fern and A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42, 3499–3500 (1971).
    [CrossRef]

2001

G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
[CrossRef]

W. W. Hu, K. Inagaki, and Y. Mizuguchi, “Measurement of birefringence in integrated optical waveguides by use of a microwave-modulated optical wave,” Opt. Lett. 26, 193–195 (2001).
[CrossRef]

2000

1999

1998

1997

A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587–2589 (1997).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[CrossRef]

1996

S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion flattened fiber,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic χ(2) domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

1995

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurement of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

R. G. Kaufman, G. R. Hulse, K. A. Stair, T. E. Bird, G. P. Devane, and A. L. Moretti, “Index of refraction ofGaAs/AlxGa1−xAs multiple quantum wells with an applied electric field using the grating coupling technique,” J. Appl. Phys. 77, 1747–1752 (1995).
[CrossRef]

R. Stolte and R. Ulrich, “Electro-optic and thermo-optic measurements of birefringence of LiNbO3 waveguides,” Opt. Lett. 20, 142–144 (1995).
[CrossRef] [PubMed]

1994

N. D. Whitbread and P. N. Robson, “Theoretical analysis of passive visible surface-emitting second-harmonic generators,” IEEE J. Quantum Electron. 30, 139–147 (1994).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

F. Bridou and B. Pardo, “Use of Fourier transform in grazing x-rays reflectometry,” J. Phys. III 4, 1523–1531 (1994).

1993

R. Eckhardt and R. Ulrich, “Mode-beating spectroscopy in a few-mode optical guide,” Appl. Phys. Lett. 63, 284–286 (1993).
[CrossRef]

1988

D. Vakhshoori, M. C. Wu, and S. Wang, “Surface-emitting second-harmonic generator for waveguide study,” Appl. Phys. Lett. 52, 422–424 (1988).
[CrossRef]

1985

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21, 581–583 (1985).
[CrossRef]

S. Adachi, “GaAs, AlAs, and AlGaAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R27 (1985).
[CrossRef]

X. Mai, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, and C. T. Seaton, “Simple versatile method for fabricating guided-wave gratings,” Appl. Opt. 24, 3155–3161 (1985).
[CrossRef] [PubMed]

1984

1981

P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
[CrossRef]

1978

A. N. Pykthin and A. D. Yas’kov, “Dispersion of the refractive index of semiconductors with diamond and zinc-blende structure,” Sov. Phys. Semicond. 12, 622–625 (1978).

1977

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

1974

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[CrossRef]

1971

R. E. Fern and A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42, 3499–3500 (1971).
[CrossRef]

1970

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Čerenkov radiation from a thin film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

1931

H. Kiessig, “Interferenz von Röntgenstrahlen an dunnen Schichten,” Ann. Phys. (Leipzig) 10, 769–772 (1931).
[CrossRef]

Adachi, S.

S. Adachi, “GaAs, AlAs, and AlGaAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R27 (1985).
[CrossRef]

Afromowitz, M. A.

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[CrossRef]

Aitchison, J. S.

Alibert, C.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurement of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

Antoniades, N.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic χ(2) domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Arnold, J. M.

Assanto, G.

G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
[CrossRef]

Berger, V.

G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
[CrossRef]

G. Leo, V. Berger, C. OwYang, and J. Nagle, “Parametric fluorescence in oxidized AlGaAs waveguides,” J. Opt. Soc. Am. B 16, 1597–1602 (1999).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587–2589 (1997).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Bhat, R.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic χ(2) domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Bird, T. E.

R. G. Kaufman, G. R. Hulse, K. A. Stair, T. E. Bird, G. P. Devane, and A. L. Moretti, “Index of refraction ofGaAs/AlxGa1−xAs multiple quantum wells with an applied electric field using the grating coupling technique,” J. Appl. Phys. 77, 1747–1752 (1995).
[CrossRef]

Bissessur, H.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurement of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

Bridou, F.

F. Bridou and B. Pardo, “Use of Fourier transform in grazing x-rays reflectometry,” J. Phys. III 4, 1523–1531 (1994).

Brinkmeyer, E.

Brown, C. T. A.

Bryce, A. C.

Byer, R. L.

Calligaro, M.

G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
[CrossRef]

Caneau, C.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic χ(2) domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Chiang, K. S.

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Choquette, K. D.

Chusseau, L.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurement of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

Crouzy, S.

A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587–2589 (1997).
[CrossRef]

De Rossi, A.

G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
[CrossRef]

Devane, G. P.

R. G. Kaufman, G. R. Hulse, K. A. Stair, T. E. Bird, G. P. Devane, and A. L. Moretti, “Index of refraction ofGaAs/AlxGa1−xAs multiple quantum wells with an applied electric field using the grating coupling technique,” J. Appl. Phys. 77, 1747–1752 (1995).
[CrossRef]

Ebrahimzadeh, M.

Eckhardt, R.

R. Eckhardt and R. Ulrich, “Mode-beating spectroscopy in a few-mode optical guide,” Appl. Phys. Lett. 63, 284–286 (1993).
[CrossRef]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Feigelson, R. S.

Fejer, M. M.

Fern, R. E.

R. E. Fern and A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42, 3499–3500 (1971).
[CrossRef]

Fiore, A.

G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587–2589 (1997).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Geib, K. M.

Gibson, U. J.

Gordon, A.

Hegarty, S. P.

Helmy, A. Saher

Hou, H. Q.

Hu, W. W.

Hulse, G. R.

R. G. Kaufman, G. R. Hulse, K. A. Stair, T. E. Bird, G. P. Devane, and A. L. Moretti, “Index of refraction ofGaAs/AlxGa1−xAs multiple quantum wells with an applied electric field using the grating coupling technique,” J. Appl. Phys. 77, 1747–1752 (1995).
[CrossRef]

Hutchings, D. C.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Huyet, G.

Inagaki, K.

Ito, R.

Itoh, K.

Johlen, D.

Kaufman, R. G.

R. G. Kaufman, G. R. Hulse, K. A. Stair, T. E. Bird, G. P. Devane, and A. L. Moretti, “Index of refraction ofGaAs/AlxGa1−xAs multiple quantum wells with an applied electric field using the grating coupling technique,” J. Appl. Phys. 77, 1747–1752 (1995).
[CrossRef]

Kiessig, H.

H. Kiessig, “Interferenz von Röntgenstrahlen an dunnen Schichten,” Ann. Phys. (Leipzig) 10, 769–772 (1931).
[CrossRef]

Kitamoto, A.

Kleckner, T. C.

Kondo, T.

Koza, M. A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic χ(2) domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Laurent, N.

A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587–2589 (1997).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Leo, G.

G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
[CrossRef]

G. Leo, V. Berger, C. OwYang, and J. Nagle, “Parametric fluorescence in oxidized AlGaAs waveguides,” J. Opt. Soc. Am. B 16, 1597–1602 (1999).
[CrossRef]

Mai, X.

Marsh, J. H.

Martin, P.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurement of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

Martin, R. J.

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Čerenkov radiation from a thin film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

McInerney, J. G.

Mizuguchi, Y.

Morabito, M.

G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
[CrossRef]

Moretti, A. L.

R. G. Kaufman, G. R. Hulse, K. A. Stair, T. E. Bird, G. P. Devane, and A. L. Moretti, “Index of refraction ofGaAs/AlxGa1−xAs multiple quantum wells with an applied electric field using the grating coupling technique,” J. Appl. Phys. 77, 1747–1752 (1995).
[CrossRef]

Moshrefzadeh, R.

Moutzouris, K.

Murabayashi, M.

Nagle, J.

G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
[CrossRef]

G. Leo, V. Berger, C. OwYang, and J. Nagle, “Parametric fluorescence in oxidized AlGaAs waveguides,” J. Opt. Soc. Am. B 16, 1597–1602 (1999).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587–2589 (1997).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Normandin, R.

P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
[CrossRef]

Onton, A.

R. E. Fern and A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42, 3499–3500 (1971).
[CrossRef]

OwYang, C.

Pardo, B.

F. Bridou and B. Pardo, “Use of Fourier transform in grazing x-rays reflectometry,” J. Phys. III 4, 1523–1531 (1994).

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Porta, P.

Pykthin, A. N.

A. N. Pykthin and A. D. Yas’kov, “Dispersion of the refractive index of semiconductors with diamond and zinc-blende structure,” Sov. Phys. Semicond. 12, 622–625 (1978).

Qi, Z.

Rajhel, A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic χ(2) domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Renner, H.

Robson, P. N.

N. D. Whitbread and P. N. Robson, “Theoretical analysis of passive visible surface-emitting second-harmonic generators,” IEEE J. Quantum Electron. 30, 139–147 (1994).
[CrossRef]

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587–2589 (1997).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Seaton, C. T.

Secondini, M.

G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
[CrossRef]

Shevgaonkar, R. K.

S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion flattened fiber,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
[CrossRef]

Shirane, M.

Shoji, I.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Skouri, E. M.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurement of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

Stair, K. A.

R. G. Kaufman, G. R. Hulse, K. A. Stair, T. E. Bird, G. P. Devane, and A. L. Moretti, “Index of refraction ofGaAs/AlxGa1−xAs multiple quantum wells with an applied electric field using the grating coupling technique,” J. Appl. Phys. 77, 1747–1752 (1995).
[CrossRef]

Stanley, C. R.

Stegeman, G. I.

X. Mai, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, and C. T. Seaton, “Simple versatile method for fabricating guided-wave gratings,” Appl. Opt. 24, 3155–3161 (1985).
[CrossRef] [PubMed]

P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
[CrossRef]

Stolte, R.

Stolze, G.

Survaiya, S. P.

S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion flattened fiber,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
[CrossRef]

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Theilmann, S.

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Tien, P. K.

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Čerenkov radiation from a thin film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

Ulrich, R.

R. Stolte and R. Ulrich, “Electro-optic and thermo-optic measurements of birefringence of LiNbO3 waveguides,” Opt. Lett. 20, 142–144 (1995).
[CrossRef] [PubMed]

R. Eckhardt and R. Ulrich, “Mode-beating spectroscopy in a few-mode optical guide,” Appl. Phys. Lett. 63, 284–286 (1993).
[CrossRef]

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Čerenkov radiation from a thin film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

Vakhshoori, D.

D. Vakhshoori, M. C. Wu, and S. Wang, “Surface-emitting second-harmonic generator for waveguide study,” Appl. Phys. Lett. 52, 422–424 (1988).
[CrossRef]

Vella, P. J.

P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
[CrossRef]

Vidal, B.

Vincent, P.

Vodjani, N.

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Vodopyanov, K. L.

Walker, R. G.

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21, 581–583 (1985).
[CrossRef]

Wang, S.

D. Vakhshoori, M. C. Wu, and S. Wang, “Surface-emitting second-harmonic generator for waveguide study,” Appl. Phys. Lett. 52, 422–424 (1988).
[CrossRef]

Whitbread, N. D.

N. D. Whitbread and P. N. Robson, “Theoretical analysis of passive visible surface-emitting second-harmonic generators,” IEEE J. Quantum Electron. 30, 139–147 (1994).
[CrossRef]

Wong, W. P.

Wu, M. C.

D. Vakhshoori, M. C. Wu, and S. Wang, “Surface-emitting second-harmonic generator for waveguide study,” Appl. Phys. Lett. 52, 422–424 (1988).
[CrossRef]

Wu, Y. S.

Yas’kov, A. D.

A. N. Pykthin and A. D. Yas’kov, “Dispersion of the refractive index of semiconductors with diamond and zinc-blende structure,” Sov. Phys. Semicond. 12, 622–625 (1978).

Yoo, S. J. B.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic χ(2) domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Zheng, D.

Ann. Phys. (Leipzig)

H. Kiessig, “Interferenz von Röntgenstrahlen an dunnen Schichten,” Ann. Phys. (Leipzig) 10, 769–772 (1931).
[CrossRef]

Appl. Opt.

Appl. Phys.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Appl. Phys. Lett.

G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001).
[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic χ(2) domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurement of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

R. Eckhardt and R. Ulrich, “Mode-beating spectroscopy in a few-mode optical guide,” Appl. Phys. Lett. 63, 284–286 (1993).
[CrossRef]

P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
[CrossRef]

D. Vakhshoori, M. C. Wu, and S. Wang, “Surface-emitting second-harmonic generator for waveguide study,” Appl. Phys. Lett. 52, 422–424 (1988).
[CrossRef]

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Čerenkov radiation from a thin film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587–2589 (1997).
[CrossRef]

Electron. Lett.

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21, 581–583 (1985).
[CrossRef]

IEEE J. Quantum Electron.

N. D. Whitbread and P. N. Robson, “Theoretical analysis of passive visible surface-emitting second-harmonic generators,” IEEE J. Quantum Electron. 30, 139–147 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion flattened fiber,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
[CrossRef]

J. Appl. Phys.

R. G. Kaufman, G. R. Hulse, K. A. Stair, T. E. Bird, G. P. Devane, and A. L. Moretti, “Index of refraction ofGaAs/AlxGa1−xAs multiple quantum wells with an applied electric field using the grating coupling technique,” J. Appl. Phys. 77, 1747–1752 (1995).
[CrossRef]

R. E. Fern and A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42, 3499–3500 (1971).
[CrossRef]

S. Adachi, “GaAs, AlAs, and AlGaAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R27 (1985).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. III

F. Bridou and B. Pardo, “Use of Fourier transform in grazing x-rays reflectometry,” J. Phys. III 4, 1523–1531 (1994).

Nature (London)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

Opt. Lett.

Science

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Solid State Commun.

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[CrossRef]

Sov. Phys. Semicond.

A. N. Pykthin and A. D. Yas’kov, “Dispersion of the refractive index of semiconductors with diamond and zinc-blende structure,” Sov. Phys. Semicond. 12, 622–625 (1978).

Other

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, 1996), pp. 408–412.

G. Leo, C. Caldarella, G. Assanto, O. Durand, A. De Rossi, M. Calligaro, X. Marcadet, and V. Berger, “Characterization of AlGaAs waveguides for three-wave mixing,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 2000 OSA Technical-Digest Series (Optical Society of America, Washington, D.C., 2000), paper CFA2, p. 363.

K. Inagaki and Y. Mizuguchi, “Optical signal processing beam forming network for steerable multibeam antenna,” presented at the Asia-Pacific Microwave Conference, Yokohama, Japan, December 8–11, 1998.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “AlGaAs QPM waveguides fabricated by GaAs/Ge/GaAs (100) sublattice reversal epitaxy,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper CFA5, p. 365.

V. Berger, “Photonic crystals for nonlinear optical frequency conversion,” in Confined Photon Systems, H. Benisty, J. Gèrard, R. Houdrè, J. Rarity, and C. Weisbuch, eds. (Springer-Verlag, Berlin, 1999), pp. 366–392.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

C. F. Klingshirn, Semiconductor Optics (Springer-Verlag, Berlin, 1997).

B. Di Bartolo, ed., Ultrafast Dynamics of Quantum Systems: Physical Processes and Spectroscopic Techniques, Vol. B372 of NATO ASI Series (Plenum, New York, 1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Refractive-index profiles of waveguides (a) S1 and (b) S2, and related transverse field profiles at λ=1.31 µm for TE0 (dotted curves) and TM0 (solid curves) modes. For sample S1 the multilayer structure is also sketched at the top of (a): (GaAs, white; AlAs, black; Al0.75Ga0.25As, gray; with the corresponding GaAs and AlAs thicknesses A, B, and C).

Fig. 2
Fig. 2

Coupling scheme for effective-index measurements.

Fig. 3
Fig. 3

Experimental setup for neff measurements. A computer (PC) controlled the rotation stage, and silicon and germanium photodiodes (PDs) were used for alignment and data acquisition, respectively. BS, beam splitter.

Fig. 4
Fig. 4

Output signal versus incidence angle (and effective index) at λ=1.31 µm in a planar waveguide of type S1 with a photoresist grating. TE and TM resonances exhibit different amplitudes owing to unequal linear polarization components in the input field.

Fig. 5
Fig. 5

Output signal versus effective index at λ=1.31 µm and T=23 °C in a planar waveguide of type S1 with an etched grating. Vertical dashed lines, resonances in the case of a photoresist grating.

Fig. 6
Fig. 6

S1-type planar waveguides with etched gratings: comparison of angular spectra for T=15 °C (solid curve) and T=35 °C (dotted curve) at λ=1.55 µm.

Fig. 7
Fig. 7

Measured TE0 effective index versus temperature for the case of Fig. 6.

Fig. 8
Fig. 8

X-ray reflectivity of the waveguide multilayer. Long-period oscillations are due to the AlAs layers; short-period oscillations (inset) refer to the thicker GaAs layers.

Fig. 9
Fig. 9

IFFT of the reflectivity curve in Fig. 8 performed from 2θ=0.64° to 2θ=6.8°. The distances between interfaces that correspond to the five peaks allow us to (unambiguously) determine the thicknesses, namely, A and C, of all the GaAs layers.

Fig. 10
Fig. 10

Phase-matching scheme for SESHG from two counterpropagating guided waves at ω.

Fig. 11
Fig. 11

Sketch of SESHG with two out-of-plane emissions at opposite angles.

Fig. 12
Fig. 12

(a) Setup for near-field SESHG image acquisition, with 1/i+1/o=1/f and pump wavelength λω=1.32 µm. (b) Near-field intensity distribution I(2ω) for TE00TM00 interaction. Waveguide length, L=3.230±0.02 mm; number of fringes, p=68.5±0.5.

Fig. 13
Fig. 13

(a) Setup for far-field SESHG image acquisition with lens focal length f=25.4 mm, λω=1.32 µm, and separation ΔZ between a given pair of δ functions. (b) Far-field picture of SESHG modes from a 7-µm-wide AlGaAs ridge for TE00TM00 (○), TE10TM00 ( * ), and TE00TM10 (+). (c) Same as (b) but after selective oxidation of AlAs layers.

Tables (3)

Tables Icon

Table 1 Effective Indices Measured in Waveguide S1 at λ = 1.31 and λ = 1.55 µm for T=23 °Ca

Tables Icon

Table 2 Measured and Calculated TE–TM Birefringences for Nonoxidized Rib Waveguide S2 at T=23 °C

Tables Icon

Table 3 Refractive Indices of the Multilayer Films at λ=1.31 and λ=1.55 µm for T=23 °Ca

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Al0.75Ga0.25As (1500 nm)/AlAs (50 nm)/
3×[GaAs (350 nm)/AlAs (50 nm)]/GaAs (420 nm),
Al0.7Ga0.3As (substrate)/AlAs (200 nm)/
2×[Al0.1Ga0.9As (270 nm)/AlAs (25 nm)]/
Al0.1Ga0.9As (270 nm)/AlAs (62 nm)/
Al0.7Ga0.3As (300 nm)/GaAs (20 nm).
βν(λ)=2πλ sin θν+m 2πΛ,
neff,ν(λ)=sin θν+m λΛ
|Δneff,ν|=|Δθ cos θν|+Δλ 1Λ+ΔΛ λΛ2.
Δθ±8.8×10-5 rad,
Δλ=±0.05 nm,
ΔΛ±0.05 nm.
P(2ω)=2ε0d14(EjEkıˆ+EiEkĵ+EiEjkˆ),
P(2ω)(x, z)=ε0deff ETE(x, z)ETM(x, z)=ε0deff [ATE+ exp(-jβTEz)+ATE- exp(+jβTEz)]eTE(x)×[ATM+ exp(-jβTMZ)+ATM- exp(+jβTMz)]eTM(x)=ε0deff eTE(x)eTM(x)[(ATE+ATM- exp(-jΔβz)+ATE-ATE+ exp(+jΔζ)+]=2ε0deff rATE+ATM+eTE(x)eTM(x)×cos(βzz)+,
d(ΔN)ΔN=dpp+dLL+dλωλω
d(ΔN)ΔN=d(Δz)Δz+d(f)f,
no2=h1Λn12+h2Λn22,
1ne2=h1Λ 1n12+h2Λ 1n22,

Metrics