Abstract

We describe measurements of the angular radiation patterns from lens-coupled terahertz antennas fabricated on photoconductive substrates. These measurements were performed with a novel terahertz (THz) time-domain spectrometer in which the femtosecond optical pulses used to gate the emitter and receiver antennas were delivered by optical fiber. We used this system to perform a comparison between the two substrate-lens designs commonly used in THz time-domain spectrometers. We measured both E-plane and H-plane emission patterns for a 90° bow-tie antenna. By comparing these experimental results with simulations based on Fresnel–Kirchoff diffraction, we find that the choice of substrate-lens design is important in determining not only the directivity of the emitted beam but also the spectral bandwidth. These results emphasize the significance of this crucial component in the design of broadband THz spectrometers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Nuss and J. Orenstein, “Terahertz time-domain spectroscopy (THz-TDS),” in Millimeter and Sub-Millimeter-Wave Spectroscopy of Solids, G. Grüner, ed. (Springer-Verlag, Berlin, 1998).
  2. C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
    [CrossRef]
  3. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
    [CrossRef]
  4. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
    [CrossRef]
  5. J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
    [CrossRef]
  6. M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
    [CrossRef]
  7. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996).
    [CrossRef]
  8. C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
    [CrossRef]
  9. A. Kaplan, “Diffraction-induced transformation of near-cycle and subcycle pulses,” J. Opt. Soc. Am. B 15, 951–956 (1998).
    [CrossRef]
  10. A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
    [CrossRef]
  11. S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025–2028 (1999).
    [CrossRef]
  12. N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
    [CrossRef]
  13. P. Jepsen and S. R. Keiding, “Radiation patterns from lens-coupled terahertz antennas,” Opt. Lett. 20, 807–809 (1995).
    [CrossRef] [PubMed]
  14. J. V. Rudd, J. L. Johnson, and D. M. Mittleman, “Quadrupole radiation from terahertz dipoles,” Opt. Lett. 25, 1556–1558 (2000).
    [CrossRef]
  15. J. V. Rudd, J. L. Johnson, and D. M. Mittleman, “Cross-polarized angular emission patterns from lens-coupled terahertz antennas,” J. Opt. Soc. Am. B 18, 1524–1533 (2001).
    [CrossRef]
  16. D. B. Rutledge and M. S. Muha, “Imaging antenna arrays,” IEEE Trans. Antennas Propag. 30, 535–540 (1982).
    [CrossRef]
  17. D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10, pp. 1–90.
  18. G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
    [CrossRef]
  19. G. V. Eleftheriades, Y. Brand, J.-F. Zürcher, and J. R. Mosig, “ALPSS: a millimeter-wave aperture-coupled patch antenna on a substrate lens,” Electron. Lett. 33, 169–170 (1997).
    [CrossRef]
  20. G. Chattopadhyay, D. Miller, H. G. LeDuc, and J. Zmuidzinas, “A dual-polarized quasi-optical SIS mixer at 550 GHz,” IEEE Trans. Microwave Theory Tech. 48, 1680–1686 (2000).
    [CrossRef]
  21. M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
    [CrossRef]
  22. S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
    [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965).
  24. D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microwave Theory Tech. 41, 1738–1749 (1993).
    [CrossRef]
  25. W. B. Dou, G. Zeng, and Z. L. Sun, “Pattern prediction of extended hemispherical lens/objective lens antenna system at millimeter wavelengths,” IEE Proc. Microwave Antennas Propag. 145, 295–298 (1998).
    [CrossRef]
  26. J. R. Bray and L. Roy, “Performance trade-offs of substrate lens antennas,” in Proceedings of the Symposium on Antenna Technology and Applied Electromagnetics (University of Manitoba, Winnipeg, 1998), pp. 321–324.
  27. P. U. Jepsen, “THz radiation patterns from dipole antennas and guided ultrafast pulse propagation,” M.S. thesis (Fysisk Institut, Odense Universitet, Odense, Denmark, 1994).
  28. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979).
    [CrossRef]
  29. C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
    [CrossRef]
  30. G. H. Brown and O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).
  31. R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
    [CrossRef]
  32. K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
    [CrossRef]
  33. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  34. A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” J. Opt. Soc. Am. A 17, 74–83 (2000).
    [CrossRef]
  35. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
    [CrossRef]
  36. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
    [CrossRef]
  37. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1719 (1995).
    [CrossRef] [PubMed]
  38. H. Jasik, Antenna Engineering Handbook, 1st ed. (McGraw-Hill, New York, 1961).

2001 (1)

2000 (4)

J. V. Rudd, J. L. Johnson, and D. M. Mittleman, “Quadrupole radiation from terahertz dipoles,” Opt. Lett. 25, 1556–1558 (2000).
[CrossRef]

A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” J. Opt. Soc. Am. A 17, 74–83 (2000).
[CrossRef]

J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

G. Chattopadhyay, D. Miller, H. G. LeDuc, and J. Zmuidzinas, “A dual-polarized quasi-optical SIS mixer at 550 GHz,” IEEE Trans. Microwave Theory Tech. 48, 1680–1686 (2000).
[CrossRef]

1999 (4)

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025–2028 (1999).
[CrossRef]

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
[CrossRef]

1998 (3)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

A. Kaplan, “Diffraction-induced transformation of near-cycle and subcycle pulses,” J. Opt. Soc. Am. B 15, 951–956 (1998).
[CrossRef]

W. B. Dou, G. Zeng, and Z. L. Sun, “Pattern prediction of extended hemispherical lens/objective lens antenna system at millimeter wavelengths,” IEE Proc. Microwave Antennas Propag. 145, 295–298 (1998).
[CrossRef]

1997 (1)

G. V. Eleftheriades, Y. Brand, J.-F. Zürcher, and J. R. Mosig, “ALPSS: a millimeter-wave aperture-coupled patch antenna on a substrate lens,” Electron. Lett. 33, 169–170 (1997).
[CrossRef]

1996 (3)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996).
[CrossRef]

1995 (2)

1994 (1)

K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
[CrossRef]

1993 (1)

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microwave Theory Tech. 41, 1738–1749 (1993).
[CrossRef]

1992 (2)

G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
[CrossRef]

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

1990 (2)

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

1989 (2)

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

1988 (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

1987 (1)

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

1982 (1)

D. B. Rutledge and M. S. Muha, “Imaging antenna arrays,” IEEE Trans. Antennas Propag. 30, 535–540 (1982).
[CrossRef]

1981 (1)

C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

1979 (1)

1952 (1)

G. H. Brown and O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Auston, D. H.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

Brand, Y.

G. V. Eleftheriades, Y. Brand, J.-F. Zürcher, and J. R. Mosig, “ALPSS: a millimeter-wave aperture-coupled patch antenna on a substrate lens,” Electron. Lett. 33, 169–170 (1997).
[CrossRef]

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Brewitt-Taylor, C. R.

C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Brown, G. H.

G. H. Brown and O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Chattopadhyay, G.

G. Chattopadhyay, D. Miller, H. G. LeDuc, and J. Zmuidzinas, “A dual-polarized quasi-optical SIS mixer at 550 GHz,” IEEE Trans. Microwave Theory Tech. 48, 1680–1686 (2000).
[CrossRef]

Compton, R. C.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Dou, W. B.

W. B. Dou, G. Zeng, and Z. L. Sun, “Pattern prediction of extended hemispherical lens/objective lens antenna system at millimeter wavelengths,” IEE Proc. Microwave Antennas Propag. 145, 295–298 (1998).
[CrossRef]

Eleftheriades, G. V.

G. V. Eleftheriades, Y. Brand, J.-F. Zürcher, and J. R. Mosig, “ALPSS: a millimeter-wave aperture-coupled patch antenna on a substrate lens,” Electron. Lett. 33, 169–170 (1997).
[CrossRef]

Fattinger, C.

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

Feng, S.

S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025–2028 (1999).
[CrossRef]

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

Filipovic, D. F.

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microwave Theory Tech. 41, 1738–1749 (1993).
[CrossRef]

Froberg, N. M.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

Gallot, G.

Gearhart, S. S.

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microwave Theory Tech. 41, 1738–1749 (1993).
[CrossRef]

Grischkowsky, D.

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

Gunton, D. J.

C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Gürtler, A.

Helm, H.

Hu, B. B.

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1719 (1995).
[CrossRef] [PubMed]

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

Hunsche, S.

Ippen, E. P.

Jacobsen, R. H.

Jepsen, P.

Jepsen, P. U.

Johnson, J. L.

Kaplan, A.

Keiding, S.

Keiding, S. R.

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Kuhl, J.

C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

LeDuc, H. G.

G. Chattopadhyay, D. Miller, H. G. LeDuc, and J. Zmuidzinas, “A dual-polarized quasi-optical SIS mixer at 550 GHz,” IEEE Trans. Microwave Theory Tech. 48, 1680–1686 (2000).
[CrossRef]

Leitenstorfer, A.

Ludwig, C.

C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

Lukosz, W.

Maloney, J. G.

K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
[CrossRef]

McGowan, R. W.

McPhedran, R. C.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Melloch, M. R.

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[CrossRef]

Miller, D.

G. Chattopadhyay, D. Miller, H. G. LeDuc, and J. Zmuidzinas, “A dual-polarized quasi-optical SIS mixer at 550 GHz,” IEEE Trans. Microwave Theory Tech. 48, 1680–1686 (2000).
[CrossRef]

Mittleman, D. M.

Mosig, J. R.

G. V. Eleftheriades, Y. Brand, J.-F. Zürcher, and J. R. Mosig, “ALPSS: a millimeter-wave aperture-coupled patch antenna on a substrate lens,” Electron. Lett. 33, 169–170 (1997).
[CrossRef]

Muha, M. S.

D. B. Rutledge and M. S. Muha, “Imaging antenna arrays,” IEEE Trans. Antennas Propag. 30, 535–540 (1982).
[CrossRef]

Nuss, M. C.

S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025–2028 (1999).
[CrossRef]

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1719 (1995).
[CrossRef] [PubMed]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

Park, S.-G.

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[CrossRef]

Popovic, Z.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Rebeiz, G. M.

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microwave Theory Tech. 41, 1738–1749 (1993).
[CrossRef]

G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
[CrossRef]

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Rees, H. D.

C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Rudd, J. V.

J. V. Rudd, J. L. Johnson, and D. M. Mittleman, “Cross-polarized angular emission patterns from lens-coupled terahertz antennas,” J. Opt. Soc. Am. B 18, 1524–1533 (2001).
[CrossRef]

J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

J. V. Rudd, J. L. Johnson, and D. M. Mittleman, “Quadrupole radiation from terahertz dipoles,” Opt. Lett. 25, 1556–1558 (2000).
[CrossRef]

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

Ruffin, A. B.

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

Rutledge, D. B.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

D. B. Rutledge and M. S. Muha, “Imaging antenna arrays,” IEEE Trans. Antennas Propag. 30, 535–540 (1982).
[CrossRef]

Shlager, K. L.

K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
[CrossRef]

Smith, G. S.

K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
[CrossRef]

Smith, P. R.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

Sun, Z. L.

W. B. Dou, G. Zeng, and Z. L. Sun, “Pattern prediction of extended hemispherical lens/objective lens antenna system at millimeter wavelengths,” IEE Proc. Microwave Antennas Propag. 145, 295–298 (1998).
[CrossRef]

Tong, P. P.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

van Exter, M.

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

Warmuth, M.

J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

Weiner, A. M.

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[CrossRef]

Whitaker, J. F.

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

Winful, H. G.

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025–2028 (1999).
[CrossRef]

Winnewisser, C.

Woodward, O. M.

G. H. Brown and O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Zeng, G.

W. B. Dou, G. Zeng, and Z. L. Sun, “Pattern prediction of extended hemispherical lens/objective lens antenna system at millimeter wavelengths,” IEE Proc. Microwave Antennas Propag. 145, 295–298 (1998).
[CrossRef]

Zhang, X.-C.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

Zimdars, D.

J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

Zmuidzinas, J.

G. Chattopadhyay, D. Miller, H. G. LeDuc, and J. Zmuidzinas, “A dual-polarized quasi-optical SIS mixer at 550 GHz,” IEEE Trans. Microwave Theory Tech. 48, 1680–1686 (2000).
[CrossRef]

Zürcher, J.-F.

G. V. Eleftheriades, Y. Brand, J.-F. Zürcher, and J. R. Mosig, “ALPSS: a millimeter-wave aperture-coupled patch antenna on a substrate lens,” Electron. Lett. 33, 169–170 (1997).
[CrossRef]

Appl. Phys. Lett. (3)

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

Electron. Lett. (2)

G. V. Eleftheriades, Y. Brand, J.-F. Zürcher, and J. R. Mosig, “ALPSS: a millimeter-wave aperture-coupled patch antenna on a substrate lens,” Electron. Lett. 33, 169–170 (1997).
[CrossRef]

C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

IEE Proc. Microwave Antennas Propag. (1)

W. B. Dou, G. Zeng, and Z. L. Sun, “Pattern prediction of extended hemispherical lens/objective lens antenna system at millimeter wavelengths,” IEE Proc. Microwave Antennas Propag. 145, 295–298 (1998).
[CrossRef]

IEEE J. Quantum Electron. (3)

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[CrossRef]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

IEEE Trans. Antennas Propag. (3)

D. B. Rutledge and M. S. Muha, “Imaging antenna arrays,” IEEE Trans. Antennas Propag. 30, 535–540 (1982).
[CrossRef]

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

G. Chattopadhyay, D. Miller, H. G. LeDuc, and J. Zmuidzinas, “A dual-polarized quasi-optical SIS mixer at 550 GHz,” IEEE Trans. Microwave Theory Tech. 48, 1680–1686 (2000).
[CrossRef]

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microwave Theory Tech. 41, 1738–1749 (1993).
[CrossRef]

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

Proc. IEEE (1)

G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
[CrossRef]

Proc. SPIE (1)

J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

RCA Rev. (1)

G. H. Brown and O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Other (6)

J. R. Bray and L. Roy, “Performance trade-offs of substrate lens antennas,” in Proceedings of the Symposium on Antenna Technology and Applied Electromagnetics (University of Manitoba, Winnipeg, 1998), pp. 321–324.

P. U. Jepsen, “THz radiation patterns from dipole antennas and guided ultrafast pulse propagation,” M.S. thesis (Fysisk Institut, Odense Universitet, Odense, Denmark, 1994).

H. Jasik, Antenna Engineering Handbook, 1st ed. (McGraw-Hill, New York, 1961).

M. C. Nuss and J. Orenstein, “Terahertz time-domain spectroscopy (THz-TDS),” in Millimeter and Sub-Millimeter-Wave Spectroscopy of Solids, G. Grüner, ed. (Springer-Verlag, Berlin, 1998).

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965).

D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10, pp. 1–90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the bow-tie emitter used in these measurements, along with definitions of the coordinate system employed throughout this paper. The opening angle of the bow tie is ϕ=90° in these measurements.

Fig. 2
Fig. 2

Ray-tracing diagrams of the two lens designs studied in this work. The upper diagram shows the collimating-lens design. The abberation of the wave front, arising from rays propagating close to the critical angle inside the lens, is evident. Rays represented by dashed lines are those that are trapped inside the lens by total internal reflection. The lower diagram shows the hyperhemispherical lens design, in which no rays are internally reflected, and the emitted radiation emerges with a divergence half-angle of ∼15° and no wave-front abberation. These diagrams are shown to scale for a substrate lens of 4 mm radius, with a refractive index equal to that of silicon, nSi=3.418. In both cases, the antenna is fabricated on a 2-mm-square GaAs substrate, also shown. In the hyperhemispherical design, a substrate of this size can interfere with the propagation of radiation at large angles and may decrease the emission efficiency as a result. The diagrams neglect the small index difference between GaAs and Si.

Fig. 3
Fig. 3

Sample simulations showing the angular emission patterns in (a) the E plane and (b) the H plane, for the two lens designs. The dotted curve, denoted as ‘hemispherical’ in these plots, shows the result for the radiation pattern inside the lens. This is equivalent to what one would measure if the emitter were located at the center of an ideal hemispherical substrate lens. The discontinuities in these patterns at 17° result from internal reflection at the air–substrate interface.

Fig. 4
Fig. 4

Schematic of the setup used in these measurements. The system is a conventional THz time-domain spectrometer, except that both photoconductive antennas are fiber coupled, as shown. This permits easy repositioning of the receiver without loss of alignment or temporal synchronization.

Fig. 5
Fig. 5

Photographs of the fiber-coupled (a) emitter and (b) receiver module. The more cumbersome emitter chuck is used to facilitate replacement of the substrate lens. The receiver module is hermetically sealed, with a substrate lens protruding from the left side in this image and electrical connections for measuring the induced photocurrent. The E plane and H plane can be measured simply by rotating both antennas.

Fig. 6
Fig. 6

Typical E-plane waveforms, for the (a) hyperhemispherical and (b) collimating-lens designs. The emission angles are shown in the plots. Waveforms from the H plane show very similar behavior, in both cases.

Fig. 7
Fig. 7

Amplitude spectra of the measured waveforms as a function of both frequency and emission angle. (a) E-plane emission from an antenna coupled to a hyperhemispherical lens. (b) E-plane emission from an antenna coupled to a collimating lens. These data and the data of Fig. 9 are all shown on a common vertical axis, to facilitate comparisons of relative amplitudes.

Fig. 8
Fig. 8

Spectral cuts through the data of Fig. 7, at two different angles, shown on a log scale. The upper two curves show the data collected along the optic axis, and the lower two curves show the data collected at an angle of 10°. These latter two curves have been vertically displaced downward by a factor of 10, for clarity. In the forward direction the collimating-lens design provides more signal at high frequency; in the off-axis direction the collimating nature of this lens design reduces the measured bandwidth more rapidly than in the aplanatic case.

Fig. 9
Fig. 9

Amplitude spectra of the measured waveforms as a function of both frequency and emission angle. (a) H-plane emission from an antenna coupled to a hyperhemispherical lens. (b) H-plane emission from an antenna coupled to a collimating lens. These data and the data of Fig. 7 are all shown on a common vertical axis, to facilitate comparisons of relative amplitudes.

Fig. 10
Fig. 10

Power emitted in the E-plane integrated over all frequency components shown in Fig. 7, as a function of emission angle. Solid squares show the results for the hyperhemispherical lens design, and open squares show the results for the collimating design. The solid and dashed curves are the results of simulations of the integrated power, for the hyperhemispherical and collimating cases, respectively. These simulated results have been scaled by a common factor, chosen so that the curve for the hyperhemispherical case coincides with the data point at an angle of zero degrees.

Fig. 11
Fig. 11

Experimentally determined spectral phase of the THz waveforms measured in the E plane. The data are shown as a function of frequency and angle, for (a) the hyperhemispherical lens design and (b) the collimating-lens design. Note the different vertical axes in the two plots. The collimating lens introduces a much larger phase distortion at large angles, which is probably related to the wave-front abberation shown in the ray-tracing diagram (Fig. 2).

Fig. 12
Fig. 12

Simulation of the full E-plane emission pattern as a function of both angle and frequency, for (a) the hyperhemispherical-lens design and (b) the collimating-lens design. The hyperhemispherical lens introduces strong interference fringes even at zero degrees, limiting the measurable emission bandwidth of the lens-coupled antenna. In contrast, the collimating design places no such limits on the spectrum, at least within the approximations of the calculation described in the text.

Fig. 13
Fig. 13

Simulated spectral amplitude in the forward direction (θ=0), for both lens designs and for several different substrate-lens radii. The legend in (a) applies to both (a) and (b). For both lens designs, the spectral bandwidth decreases as the lens radius increases, as a result of the enhancement of the low-frequency components. In the hyperhemispherical case, even the smallest lens gives rise to a substantial decrease in amplitude at high frequencies. In the collimating lens, this effect is only evident for the largest lenses.

Fig. 14
Fig. 14

Directivity of the emitted beam, calculated as described in the text. The open squares and circles show the results for the E plane, and the crosses and plus signs show the results for the H plane. The beam from the collimating lens shows a directivity that increases rapidly with increasing frequency, whereas the hyperhemispherical lens shows little frequency dependence. The solid curves are the directivities for the two lens designs calculated from the simulations shown in Fig. 12.

Fig. 15
Fig. 15

Gaussian beam-coupling efficiency, calculated as described in the text, for the E-plane data shown in Fig. 7. The hyperhemispherical-lens design produces a beam that couples more efficiently to a Gaussian mode over much of the relevant bandwidth. This offsets to some degree the lower directivity of the radiation from this lens design.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(r)dAE(r0)exp(ikr)r×[cos(n, r)-nSi cos(n, r0)].
dcollimating=Rnn-1,
dhyper=Rn+1n.
D(ν)=2 max[|ETHz(θ)|2]|ETHz(θ)|2 sin θdθ,
η(ν)=ETHz(θ)exp-(θ/θ0)2 sin θdθ2|ETHz(θ)|2 sin θdθexp[-2(θ/θ0)2]sin θdθ.

Metrics