Abstract

Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author’s knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
    [CrossRef]
  2. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
    [CrossRef]
  3. A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,” in Helmet- and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
    [CrossRef]
  4. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, S. Chandra, and T. J. Bunning, “Switchable holograms for displays and telecommunications,” in Liquid Crystals V, I.-C. Khoo, ed., Proc. SPIE 4463, 1–10 (2001).
    [CrossRef]
  5. S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds., Proc. SPIE 4279, 69–77 (2001).
    [CrossRef]
  6. R. Smith and M. Popovich, “Application-specific integrated filters for color-sequential microdisplay-based projection applications,” J. Soc. Inf. Disp. 9, 203–244 (2000).
    [CrossRef]
  7. S. F. Sagan, R. T. Smith, and M. M. Popovich, “DigiLens color sequential filtering for microdisplay-based projection applications,” in Current Developments in Lens Design and Optical Systems Engineering, R. E. Fischer, R. B. Johnson, W. J. Smith, and W. H. Swantner, eds., Proc. SPIE 4093, 281–287 (2000).
    [CrossRef]
  8. R. Smith and M. Popovich, “Replacing the color wheel,” Inf. Disp. 16, 20–23 (2000).
  9. S. F. Sagan, R. T. Smith, and M. M. Popovich, “Electrically switchable Bragg grating technology for projection displays,” in Projection Displays VII, M. H. Wu, ed., Proc. SPIE 4294, 75–83 (2001).
    [CrossRef]
  10. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
    [CrossRef] [PubMed]
  11. K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
    [CrossRef]
  12. C. C. Bowley and G. P. Crawford, “Improved reflective displays based on polymer-dispersed liquid crystals,” J. Opt. Technol. 67, 717–722 (2000).
    [CrossRef]
  13. S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE 4291, 79–88 (2001).
    [CrossRef]
  14. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14, 187–190 (2002).
    [CrossRef]
  15. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” in Diffractive and Holographic Optics Technology, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2152, 303–313 (1994).
    [CrossRef]
  16. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratingsformed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
    [CrossRef]
  17. R. L. Sutherland, L. V. Natarajan, T. J. Bunning, and V. P. Tondiglia, “Switchable holographic polymer-dispersed liquid crystals,” in Handbook of Advanced Electronic and Photonic Materials and Devices, H. S. Nalwa, ed. (Academic, San Diego, Calif., 2000), pp. 75–81.
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).
    [CrossRef]
  19. G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
    [CrossRef]
  20. J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
    [CrossRef]
  21. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” J. Opt. Soc. Am. B 19, 183–189 (2002).
    [CrossRef]
  22. M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
    [CrossRef]
  23. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
    [CrossRef]
  24. B.-G. Wu, J. H. Erdmann, and J. W. Doane, “Response time and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1465 (1989).
    [CrossRef]
  25. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “Morphology of reflection holograms formed in situ using polymer-disperse liquid crystals,” Polymer 37, 3147–3150 (1996).
    [CrossRef]
  26. A. Golemme, S. Žumer, J. W. Doane, and M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. A 37, 559–569 (1988).
    [CrossRef] [PubMed]
  27. G. S. Iannacchione, D. Finotello, L. V. Natarajan, R. L. Sutherland, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Deuterium NMR and morphology study of polymer dispersed liquid crystal Bragg gratings,” Europhys. Lett. 36, 425–430 (1996).
    [CrossRef]
  28. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).
  29. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975).
  30. D. Corson and P. Lorrain, Introduction to Electromagnetic Fields and Waves (Freeman, San Francisco, Calif., 1962).
  31. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).
  32. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid crystals. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
    [CrossRef]

2002 (3)

2001 (6)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratingsformed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, S. Chandra, and T. J. Bunning, “Switchable holograms for displays and telecommunications,” in Liquid Crystals V, I.-C. Khoo, ed., Proc. SPIE 4463, 1–10 (2001).
[CrossRef]

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds., Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

S. F. Sagan, R. T. Smith, and M. M. Popovich, “Electrically switchable Bragg grating technology for projection displays,” in Projection Displays VII, M. H. Wu, ed., Proc. SPIE 4294, 75–83 (2001).
[CrossRef]

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE 4291, 79–88 (2001).
[CrossRef]

2000 (6)

R. Smith and M. Popovich, “Application-specific integrated filters for color-sequential microdisplay-based projection applications,” J. Soc. Inf. Disp. 9, 203–244 (2000).
[CrossRef]

S. F. Sagan, R. T. Smith, and M. M. Popovich, “DigiLens color sequential filtering for microdisplay-based projection applications,” in Current Developments in Lens Design and Optical Systems Engineering, R. E. Fischer, R. B. Johnson, W. J. Smith, and W. H. Swantner, eds., Proc. SPIE 4093, 281–287 (2000).
[CrossRef]

R. Smith and M. Popovich, “Replacing the color wheel,” Inf. Disp. 16, 20–23 (2000).

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,” in Helmet- and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Improved reflective displays based on polymer-dispersed liquid crystals,” J. Opt. Technol. 67, 717–722 (2000).
[CrossRef]

1999 (1)

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
[CrossRef]

1997 (1)

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

1996 (2)

G. S. Iannacchione, D. Finotello, L. V. Natarajan, R. L. Sutherland, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Deuterium NMR and morphology study of polymer dispersed liquid crystal Bragg gratings,” Europhys. Lett. 36, 425–430 (1996).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “Morphology of reflection holograms formed in situ using polymer-disperse liquid crystals,” Polymer 37, 3147–3150 (1996).
[CrossRef]

1995 (2)

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

1994 (2)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” in Diffractive and Holographic Optics Technology, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

1993 (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

1989 (1)

B.-G. Wu, J. H. Erdmann, and J. W. Doane, “Response time and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1465 (1989).
[CrossRef]

1988 (1)

A. Golemme, S. Žumer, J. W. Doane, and M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. A 37, 559–569 (1988).
[CrossRef] [PubMed]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).
[CrossRef]

Adams, W. W.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “Morphology of reflection holograms formed in situ using polymer-disperse liquid crystals,” Polymer 37, 3147–3150 (1996).
[CrossRef]

G. S. Iannacchione, D. Finotello, L. V. Natarajan, R. L. Sutherland, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Deuterium NMR and morphology study of polymer dispersed liquid crystal Bragg gratings,” Europhys. Lett. 36, 425–430 (1996).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” in Diffractive and Holographic Optics Technology, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

Ashmead, A. C.

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE 4291, 79–88 (2001).
[CrossRef]

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,” in Helmet- and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

Bowley, C. C.

Brandelik, D. M.

Bunning, T. J.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid crystals. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14, 187–190 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratingsformed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, S. Chandra, and T. J. Bunning, “Switchable holograms for displays and telecommunications,” in Liquid Crystals V, I.-C. Khoo, ed., Proc. SPIE 4463, 1–10 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “Morphology of reflection holograms formed in situ using polymer-disperse liquid crystals,” Polymer 37, 3147–3150 (1996).
[CrossRef]

G. S. Iannacchione, D. Finotello, L. V. Natarajan, R. L. Sutherland, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Deuterium NMR and morphology study of polymer dispersed liquid crystal Bragg gratings,” Europhys. Lett. 36, 425–430 (1996).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” in Diffractive and Holographic Optics Technology, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Butler, J. J.

Chandra, S.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid crystals. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, S. Chandra, and T. J. Bunning, “Switchable holograms for displays and telecommunications,” in Liquid Crystals V, I.-C. Khoo, ed., Proc. SPIE 4463, 1–10 (2001).
[CrossRef]

Cid, R.

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE 4291, 79–88 (2001).
[CrossRef]

Clark, J.

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,” in Helmet- and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

Colegrove, J.

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds., Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

Crawford, G. P.

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Improved reflective displays based on polymer-dispersed liquid crystals,” J. Opt. Technol. 67, 717–722 (2000).
[CrossRef]

Date, M.

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
[CrossRef]

Doane, J. W.

B.-G. Wu, J. H. Erdmann, and J. W. Doane, “Response time and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1465 (1989).
[CrossRef]

A. Golemme, S. Žumer, J. W. Doane, and M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. A 37, 559–569 (1988).
[CrossRef] [PubMed]

Erdmann, J. H.

B.-G. Wu, J. H. Erdmann, and J. W. Doane, “Response time and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1465 (1989).
[CrossRef]

Finotello, D.

G. S. Iannacchione, D. Finotello, L. V. Natarajan, R. L. Sutherland, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Deuterium NMR and morphology study of polymer dispersed liquid crystal Bragg gratings,” Europhys. Lett. 36, 425–430 (1996).
[CrossRef]

Fontecchio, A. K.

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

Golemme, A.

A. Golemme, S. Žumer, J. W. Doane, and M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. A 37, 559–569 (1988).
[CrossRef] [PubMed]

Gunther, J.

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE 4291, 79–88 (2001).
[CrossRef]

Iannacchione, G. S.

G. S. Iannacchione, D. Finotello, L. V. Natarajan, R. L. Sutherland, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Deuterium NMR and morphology study of polymer dispersed liquid crystal Bragg gratings,” Europhys. Lett. 36, 425–430 (1996).
[CrossRef]

Jazbinšek, M.

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

Kato, K.

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).
[CrossRef]

Liu, P.-Y.

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds., Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

Malcuit, M. S.

Montemezzani, G.

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Natarajan, L. V.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid crystals. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14, 187–190 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratingsformed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, S. Chandra, and T. J. Bunning, “Switchable holograms for displays and telecommunications,” in Liquid Crystals V, I.-C. Khoo, ed., Proc. SPIE 4463, 1–10 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “Morphology of reflection holograms formed in situ using polymer-disperse liquid crystals,” Polymer 37, 3147–3150 (1996).
[CrossRef]

G. S. Iannacchione, D. Finotello, L. V. Natarajan, R. L. Sutherland, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Deuterium NMR and morphology study of polymer dispersed liquid crystal Bragg gratings,” Europhys. Lett. 36, 425–430 (1996).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” in Diffractive and Holographic Optics Technology, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Neubert, M. E.

A. Golemme, S. Žumer, J. W. Doane, and M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. A 37, 559–569 (1988).
[CrossRef] [PubMed]

Olenik, I. D.

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

Popovich, M.

R. Smith and M. Popovich, “Replacing the color wheel,” Inf. Disp. 16, 20–23 (2000).

R. Smith and M. Popovich, “Application-specific integrated filters for color-sequential microdisplay-based projection applications,” J. Soc. Inf. Disp. 9, 203–244 (2000).
[CrossRef]

Popovich, M. M.

S. F. Sagan, R. T. Smith, and M. M. Popovich, “Electrically switchable Bragg grating technology for projection displays,” in Projection Displays VII, M. H. Wu, ed., Proc. SPIE 4294, 75–83 (2001).
[CrossRef]

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE 4291, 79–88 (2001).
[CrossRef]

S. F. Sagan, R. T. Smith, and M. M. Popovich, “DigiLens color sequential filtering for microdisplay-based projection applications,” in Current Developments in Lens Design and Optical Systems Engineering, R. E. Fischer, R. B. Johnson, W. J. Smith, and W. H. Swantner, eds., Proc. SPIE 4093, 281–287 (2000).
[CrossRef]

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,” in Helmet- and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

Qian, S.

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds., Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

Quan, X.

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds., Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

Ritums, D. L.

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE 4291, 79–88 (2001).
[CrossRef]

Rodriguez, M. A.

Sagan, S. F.

S. F. Sagan, R. T. Smith, and M. M. Popovich, “Electrically switchable Bragg grating technology for projection displays,” in Projection Displays VII, M. H. Wu, ed., Proc. SPIE 4294, 75–83 (2001).
[CrossRef]

S. F. Sagan, R. T. Smith, and M. M. Popovich, “DigiLens color sequential filtering for microdisplay-based projection applications,” in Current Developments in Lens Design and Optical Systems Engineering, R. E. Fischer, R. B. Johnson, W. J. Smith, and W. H. Swantner, eds., Proc. SPIE 4093, 281–287 (2000).
[CrossRef]

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,” in Helmet- and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

Shepherd, C. K.

Siwecki, S. A.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid crystals. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, S. Chandra, and T. J. Bunning, “Switchable holograms for displays and telecommunications,” in Liquid Crystals V, I.-C. Khoo, ed., Proc. SPIE 4463, 1–10 (2001).
[CrossRef]

Smith, R.

R. Smith and M. Popovich, “Replacing the color wheel,” Inf. Disp. 16, 20–23 (2000).

R. Smith and M. Popovich, “Application-specific integrated filters for color-sequential microdisplay-based projection applications,” J. Soc. Inf. Disp. 9, 203–244 (2000).
[CrossRef]

Smith, R. T.

S. F. Sagan, R. T. Smith, and M. M. Popovich, “Electrically switchable Bragg grating technology for projection displays,” in Projection Displays VII, M. H. Wu, ed., Proc. SPIE 4294, 75–83 (2001).
[CrossRef]

S. F. Sagan, R. T. Smith, and M. M. Popovich, “DigiLens color sequential filtering for microdisplay-based projection applications,” in Current Developments in Lens Design and Optical Systems Engineering, R. E. Fischer, R. B. Johnson, W. J. Smith, and W. H. Swantner, eds., Proc. SPIE 4093, 281–287 (2000).
[CrossRef]

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,” in Helmet- and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

Storey, J.

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE 4291, 79–88 (2001).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid crystals. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14, 187–190 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratingsformed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, S. Chandra, and T. J. Bunning, “Switchable holograms for displays and telecommunications,” in Liquid Crystals V, I.-C. Khoo, ed., Proc. SPIE 4463, 1–10 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “Morphology of reflection holograms formed in situ using polymer-disperse liquid crystals,” Polymer 37, 3147–3150 (1996).
[CrossRef]

G. S. Iannacchione, D. Finotello, L. V. Natarajan, R. L. Sutherland, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Deuterium NMR and morphology study of polymer dispersed liquid crystal Bragg gratings,” Europhys. Lett. 36, 425–430 (1996).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” in Diffractive and Holographic Optics Technology, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Tanaka, K.

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
[CrossRef]

Tomlin, D.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14, 187–190 (2002).
[CrossRef]

Tondiglia, V. P.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14, 187–190 (2002).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid crystals. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, S. Chandra, and T. J. Bunning, “Switchable holograms for displays and telecommunications,” in Liquid Crystals V, I.-C. Khoo, ed., Proc. SPIE 4463, 1–10 (2001).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratingsformed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “Morphology of reflection holograms formed in situ using polymer-disperse liquid crystals,” Polymer 37, 3147–3150 (1996).
[CrossRef]

G. S. Iannacchione, D. Finotello, L. V. Natarajan, R. L. Sutherland, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Deuterium NMR and morphology study of polymer dispersed liquid crystal Bragg gratings,” Europhys. Lett. 36, 425–430 (1996).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” in Diffractive and Holographic Optics Technology, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Vezie, D. L.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “Morphology of reflection holograms formed in situ using polymer-disperse liquid crystals,” Polymer 37, 3147–3150 (1996).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

Wu, B.-G.

B.-G. Wu, J. H. Erdmann, and J. W. Doane, “Response time and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1465 (1989).
[CrossRef]

Yeralan, S.

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE 4291, 79–88 (2001).
[CrossRef]

Zgonik, M.

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Žumer, S.

A. Golemme, S. Žumer, J. W. Doane, and M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. A 37, 559–569 (1988).
[CrossRef] [PubMed]

Adv. Mater. (1)

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14, 187–190 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratingsformed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).
[CrossRef]

Chem. Mater. (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Europhys. Lett. (1)

G. S. Iannacchione, D. Finotello, L. V. Natarajan, R. L. Sutherland, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Deuterium NMR and morphology study of polymer dispersed liquid crystal Bragg gratings,” Europhys. Lett. 36, 425–430 (1996).
[CrossRef]

Inf. Disp. (1)

R. Smith and M. Popovich, “Replacing the color wheel,” Inf. Disp. 16, 20–23 (2000).

J. Appl. Phys. (1)

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Opt. Technol. (1)

J. Soc. Inf. Disp. (1)

R. Smith and M. Popovich, “Application-specific integrated filters for color-sequential microdisplay-based projection applications,” J. Soc. Inf. Disp. 9, 203–244 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
[CrossRef]

Liq. Cryst. (1)

B.-G. Wu, J. H. Erdmann, and J. W. Doane, “Response time and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1465 (1989).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

A. Golemme, S. Žumer, J. W. Doane, and M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. A 37, 559–569 (1988).
[CrossRef] [PubMed]

Phys. Rev. E (1)

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Polymer (2)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “Morphology of reflection holograms formed in situ using polymer-disperse liquid crystals,” Polymer 37, 3147–3150 (1996).
[CrossRef]

Proc. SPIE (7)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” in Diffractive and Holographic Optics Technology, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

S. F. Sagan, R. T. Smith, and M. M. Popovich, “DigiLens color sequential filtering for microdisplay-based projection applications,” in Current Developments in Lens Design and Optical Systems Engineering, R. E. Fischer, R. B. Johnson, W. J. Smith, and W. H. Swantner, eds., Proc. SPIE 4093, 281–287 (2000).
[CrossRef]

S. F. Sagan, R. T. Smith, and M. M. Popovich, “Electrically switchable Bragg grating technology for projection displays,” in Projection Displays VII, M. H. Wu, ed., Proc. SPIE 4294, 75–83 (2001).
[CrossRef]

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE 4291, 79–88 (2001).
[CrossRef]

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,” in Helmet- and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, S. Chandra, and T. J. Bunning, “Switchable holograms for displays and telecommunications,” in Liquid Crystals V, I.-C. Khoo, ed., Proc. SPIE 4463, 1–10 (2001).
[CrossRef]

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds., Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

Other (5)

R. L. Sutherland, L. V. Natarajan, T. J. Bunning, and V. P. Tondiglia, “Switchable holographic polymer-dispersed liquid crystals,” in Handbook of Advanced Electronic and Photonic Materials and Devices, H. S. Nalwa, ed. (Academic, San Diego, Calif., 2000), pp. 75–81.

F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975).

D. Corson and P. Lorrain, Introduction to Electromagnetic Fields and Waves (Freeman, San Francisco, Calif., 1962).

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Orientation of a droplet director N relative to the laboratory frame of reference.

Fig. 2
Fig. 2

Representative distribution functions p(u=cos θ0): (a) u¯=0, (b) u¯=±1.

Fig. 3
Fig. 3

Examples of droplet-director orientation and distribution: (a) Isotropic distribution; the sphere is the locus of all possible director end points. (b) The directors are clustered about the x axis. The mean orientation is along the x axis, and the cone represents the locus of directors at ±σu and ±σϕ. (c) The mean orientation is isotropically distributed in the xy plane, and the polar distribution is clustered about this plane. The upper and lower cones represent the locus of directors at ±σu with azimuth angles equally likely anywhere in the cones.

Fig. 4
Fig. 4

Schematic illustration of reference and signal waves Eρ and Eσ, respectively, in (a) a reflection grating and (b) a transmission grating.

Fig. 5
Fig. 5

Peak diffraction efficiency of a reflection HPDLC grating for normal incidence as a function of reduced field E/Ec and various values of σu.

Fig. 6
Fig. 6

Peak diffraction efficiency of a reflection HPDLC grating as a function of reduced field E/Ec for polarized and unpolarized light at off-normal incidence.

Fig. 7
Fig. 7

Peak diffraction efficiency of a transmission HPDLC grating as a function of reduced field E/Ec for s-polarized and p-polarized light and different alignment of droplet directors with respect to the grating plane: (a) Normal alignment. Plots with diamonds show the effect of making the u distribution isotropic. (b) Tangential alignment. Plots with diamonds show the effect of making both the u and ϕ0 distributions isotropic.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

θ(u, E)=12 tan-12u1-u22u2-1+(E/Ec)2,
εd=R-1ε000ε000εR,
R=cos θ cos ϕcos θ sin ϕ-sin θ-sin ϕcos ϕ0sin θ cos ϕsin θ sin ϕcos θ,
εd=ε+Δε sin2 θ cos2 ϕΔε sin2 θ sin ϕ cos ϕΔε sin θ cos θ cos ϕΔε sin2 θ sin ϕ cos ϕε+Δε sin2 θ sin2 ϕΔε sin θ cos θ sin ϕΔε sin θ cos θ cos ϕΔε sin θ cos θ sin ϕε+Δε cos2 θ,
εdx=ε+Δε0π-11 sin2 θ(u, E)×cos2 ϕ0p(u)q(ϕ0)dudϕ0,
εdy=ε+Δε0π-11 sin2 θ(u, E)×sin2 ϕ0p(u)q(ϕ0)dudϕ0,
εdz=ε+Δε-11 cos2 θ(u, E)p(u)du.
p(u)=A exp-(u-u¯)22σu2,
q(ϕ0)=B exp-(ϕ0-ϕ¯0)22σϕ2,
A=22πσuerf1+u¯2σu+erf1-u¯2σu,
B=22πσϕerfϕ¯02σϕ+erfπ-ϕ¯02σϕ,
erf(s)=2π 0s exp(-t2)dt
ε(r)=ε(0)+ε(1) cos(K·r),
ε(0)=(1-αfc)εp+αfcεd,
ε(1)=2fcπ sin(απ)(εd-εp).
κ=πeˆσ·ε(1)·eˆρ2ε0ngλ|cos θσ|cos θρ,
n=nσnρ,
g=cos δσ cos δρ.
κs=πεyy(1)2ε0nygsλ cos θρ,
κp=π(εxx(1) cos2 θρ-εzz(1) sin2 θρ)2ε0n(θρ)gpλ cos θρ,
[n(θρ)]-2=nx-2 cos2 θρ+nz-2 sin2 θρ,
gp=nx2 cos2 θρ+nz2 sin2 θρ[(nx2 cos2 θρ+nz2 sin2 θρ)2+(nx2-nz2)2 sin2 θρ cos2 θρ]1/2,
κp=πλ cos θρ[n1x cos 2θρ+(n1x-n1z)sin2 θρ].
ηj(λ)=κj2 sinh2 νj(νj/L)2 cosh2 νj+(Δk/2)2 sinh2 νj,
νj=(κjL)2-(ΔkL/2)2,
Δk=2π2nλ-1Λ,
ηj=tanh2(κjL).
ηj=sin2(κjL).
tan θρ=εxx(1)εzz(1)1/2,

Metrics