Abstract

We report a mathematical formulation that successfully describes the holographic photocurrent that is produced, in strongly absorbing photorefractive materials, by the action of a pattern of interference fringes of light vibrating sinusoidally with large amplitude. The large vibrating amplitude produces a sensible enhancement of the photocurrent signal and in this way facilitates measurements. We also show that taking account of the bulk light absorption of the sample is essential for adequately describing the experiment. We measure the first temporal harmonic of the photocurrent, without an externally applied field, as a function of the amplitude and the temporal frequency of the vibrating pattern of fringes and show that these data fit our theoretical model well. From this fit we are able to determine some material parameters for pure and doped photorefractive Bi12TiO20 crystals.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription