Abstract

We report a study on the influence of the pedestal in laser–gas jet interaction experiments at very high intensity. The dynamic of the plasma resulting from the interaction is probed on a 3.8-ns time scale with a 60-fs time and a 5-µm space resolution using a Mach–Zehnder interferometer. It is observed that a plasma is created by the amplified spontaneous emission pedestal before the ultrashort pulse reaches the jet. We show that this preplasma modifies dramatically the propagation of the laser beam, which splits into two parts when it reaches the preplasma. The major part of the beam is strongly refracted by the preplasma while a small fraction is guided in the channel resulting from the hydrodynamic expansion of the preplasma.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. Fluck, C. J. Buckley, and F. Förster, “Scanning X-ray microscopy using a laser-plasma source,” Rev. Sci. Instrum. 64, 1478–82 (1993).
    [CrossRef]
  2. A. G. Michette, A. M. Rogoyski, and R. E. Burge, “A laser-generated plasma source for x-ray lithography and VSLI,” J. Phys. E 21, 959–65 (1988).
    [CrossRef]
  3. O. Willi, G. Kiehn, J. Edwards, V. Barrow, R. A. Smith, J. Wark, and E. Turcu, “observations of high-density plasmas produced with a picosecond high-power KrF Irradiation,” Europhys. Lett. 10, 141–146 (1989).
    [CrossRef]
  4. H. C. Kapteyn, M. M. Murnane, A. Szöke, and R. W. Falcone, “Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering,” Opt. Lett. 16, 490–492 (1991).
    [CrossRef] [PubMed]
  5. J. A. Cobble, G. T. Schappert, L. A. Jones, A. J. Taylor, G. A. Kyrala, and R. D. Fulton, “The interaction of a high-irradiance, subpicosecond laser pulse with aluminum: The effects of the prepulse on x-ray production,” J. Appl. Phys. 69, 3369–3371 (1991).
    [CrossRef]
  6. U. Teubner, G. Kühnle, and F. P. Schäfer, “Soft x-ray spectra produced by subpicosecond laser double-pulses,” Appl. Phys. Lett. 59, 2672–2674 (1991).
    [CrossRef]
  7. N. H. Burnett and G. D. Enright, “Population inversion in the recombination of optically-ionized plasmas,” IEEE J. Quantum Electron. 26, 1797–1808 (1990).
    [CrossRef]
  8. P. Amendt, D. C. Eder, and S. C. Wilks, “X-ray lasing by optical-field-induced ionization,” Phys. Rev. Lett. 66, 2589–2592 (1991).
    [CrossRef] [PubMed]
  9. D. C. Eder, P. Amendt, and S. C. Wilks, “Optical-field-ionized plasma x-ray lasers,” Phys. Rev. A 45, 6761–6772 (1992).
    [CrossRef] [PubMed]
  10. D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
    [CrossRef]
  11. M. J. Grout, K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Optical-field induced gas mixture breakdown for recombination X-ray lasers,” Opt. Commun. 141, 213–220 (1997).
    [CrossRef]
  12. K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Modelling of OFI-plasma recombination x-ray lasers,” Opt. Commun. 140, 165–178 (1997).
    [CrossRef]
  13. M. J. Grout, G. J. Pert, and A. Djaoui, “Propagation effects optical-field-induced gas mixture breakdown for recombination X-ray lasers,” J. Phys. B 31, 197–207 (1998).
    [CrossRef]
  14. S. Hulin, T. Auguste, P. D’Oliveira, P. Monot, S. Jacquemot, L. Bonnet, and E. Lefebvre, “Soft x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen,” Phys. Rev. E 61, 5693–5700 (2000).
    [CrossRef]
  15. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  16. G. Chériaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort pulse amplification,” Opt. Lett. 21, 414–416 (1996).
    [CrossRef]
  17. J. P. Chambaret, C. Le-Blanc, G. Chériaux, P. Curley, G. Darpentigny, and P. Rousseau, “Generation of 25-TW, 32-fs pulses at 10 Hz,” Opt. Lett. 21, 1921–1923 (1996).
    [CrossRef] [PubMed]
  18. K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its applications,” IEEE J. Sel. Top. Quantum Electron. 6, 658–675 (2000).
    [CrossRef]
  19. G. Albrecht, A. Antonetti, and G. Mourou, “Temporal shape analysis of Nd3+:YAG active–passive mode-locked pulses,” Opt. Commun. 40, 59–62 (1981).
    [CrossRef]
  20. T. Auguste, M. Bougeard, C. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999).
    [CrossRef]
  21. O. F. Hagena, “Cluster beams from nozzle sources,” in Molecular Beams and Low Density Gas Dynamics, P. P. Wegener, ed. (Marcel Dekker, New York, 1974), pp. 93–167.
  22. T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A 53, 3379–3402 (1996).
    [CrossRef] [PubMed]
  23. O. F. Hagena and W. Obert, “Cluster formation in expanding supersonic jets: Effect of pressure, temperature, nozzle size, and test gas,” J. Chem. Phys. 56, 1793–1802 (1972).
    [CrossRef]
  24. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

2000

S. Hulin, T. Auguste, P. D’Oliveira, P. Monot, S. Jacquemot, L. Bonnet, and E. Lefebvre, “Soft x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen,” Phys. Rev. E 61, 5693–5700 (2000).
[CrossRef]

K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its applications,” IEEE J. Sel. Top. Quantum Electron. 6, 658–675 (2000).
[CrossRef]

1999

T. Auguste, M. Bougeard, C. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999).
[CrossRef]

1998

M. J. Grout, G. J. Pert, and A. Djaoui, “Propagation effects optical-field-induced gas mixture breakdown for recombination X-ray lasers,” J. Phys. B 31, 197–207 (1998).
[CrossRef]

1997

M. J. Grout, K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Optical-field induced gas mixture breakdown for recombination X-ray lasers,” Opt. Commun. 141, 213–220 (1997).
[CrossRef]

K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Modelling of OFI-plasma recombination x-ray lasers,” Opt. Commun. 140, 165–178 (1997).
[CrossRef]

1996

1994

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

1993

A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. Fluck, C. J. Buckley, and F. Förster, “Scanning X-ray microscopy using a laser-plasma source,” Rev. Sci. Instrum. 64, 1478–82 (1993).
[CrossRef]

1992

D. C. Eder, P. Amendt, and S. C. Wilks, “Optical-field-ionized plasma x-ray lasers,” Phys. Rev. A 45, 6761–6772 (1992).
[CrossRef] [PubMed]

1991

P. Amendt, D. C. Eder, and S. C. Wilks, “X-ray lasing by optical-field-induced ionization,” Phys. Rev. Lett. 66, 2589–2592 (1991).
[CrossRef] [PubMed]

H. C. Kapteyn, M. M. Murnane, A. Szöke, and R. W. Falcone, “Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering,” Opt. Lett. 16, 490–492 (1991).
[CrossRef] [PubMed]

J. A. Cobble, G. T. Schappert, L. A. Jones, A. J. Taylor, G. A. Kyrala, and R. D. Fulton, “The interaction of a high-irradiance, subpicosecond laser pulse with aluminum: The effects of the prepulse on x-ray production,” J. Appl. Phys. 69, 3369–3371 (1991).
[CrossRef]

U. Teubner, G. Kühnle, and F. P. Schäfer, “Soft x-ray spectra produced by subpicosecond laser double-pulses,” Appl. Phys. Lett. 59, 2672–2674 (1991).
[CrossRef]

1990

N. H. Burnett and G. D. Enright, “Population inversion in the recombination of optically-ionized plasmas,” IEEE J. Quantum Electron. 26, 1797–1808 (1990).
[CrossRef]

1989

O. Willi, G. Kiehn, J. Edwards, V. Barrow, R. A. Smith, J. Wark, and E. Turcu, “observations of high-density plasmas produced with a picosecond high-power KrF Irradiation,” Europhys. Lett. 10, 141–146 (1989).
[CrossRef]

1988

A. G. Michette, A. M. Rogoyski, and R. E. Burge, “A laser-generated plasma source for x-ray lithography and VSLI,” J. Phys. E 21, 959–65 (1988).
[CrossRef]

1985

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

1981

G. Albrecht, A. Antonetti, and G. Mourou, “Temporal shape analysis of Nd3+:YAG active–passive mode-locked pulses,” Opt. Commun. 40, 59–62 (1981).
[CrossRef]

1972

O. F. Hagena and W. Obert, “Cluster formation in expanding supersonic jets: Effect of pressure, temperature, nozzle size, and test gas,” J. Chem. Phys. 56, 1793–1802 (1972).
[CrossRef]

Albrecht, G.

G. Albrecht, A. Antonetti, and G. Mourou, “Temporal shape analysis of Nd3+:YAG active–passive mode-locked pulses,” Opt. Commun. 40, 59–62 (1981).
[CrossRef]

Amendt, P.

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

D. C. Eder, P. Amendt, and S. C. Wilks, “Optical-field-ionized plasma x-ray lasers,” Phys. Rev. A 45, 6761–6772 (1992).
[CrossRef] [PubMed]

P. Amendt, D. C. Eder, and S. C. Wilks, “X-ray lasing by optical-field-induced ionization,” Phys. Rev. Lett. 66, 2589–2592 (1991).
[CrossRef] [PubMed]

Antonetti, A.

G. Albrecht, A. Antonetti, and G. Mourou, “Temporal shape analysis of Nd3+:YAG active–passive mode-locked pulses,” Opt. Commun. 40, 59–62 (1981).
[CrossRef]

Auguste, T.

S. Hulin, T. Auguste, P. D’Oliveira, P. Monot, S. Jacquemot, L. Bonnet, and E. Lefebvre, “Soft x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen,” Phys. Rev. E 61, 5693–5700 (2000).
[CrossRef]

T. Auguste, M. Bougeard, C. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999).
[CrossRef]

Barrow, V.

O. Willi, G. Kiehn, J. Edwards, V. Barrow, R. A. Smith, J. Wark, and E. Turcu, “observations of high-density plasmas produced with a picosecond high-power KrF Irradiation,” Europhys. Lett. 10, 141–146 (1989).
[CrossRef]

Barty, C. P. J.

K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its applications,” IEEE J. Sel. Top. Quantum Electron. 6, 658–675 (2000).
[CrossRef]

Bonnet, L.

S. Hulin, T. Auguste, P. D’Oliveira, P. Monot, S. Jacquemot, L. Bonnet, and E. Lefebvre, “Soft x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen,” Phys. Rev. E 61, 5693–5700 (2000).
[CrossRef]

Bougeard, M.

T. Auguste, M. Bougeard, C. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999).
[CrossRef]

Browne, M. T.

A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. Fluck, C. J. Buckley, and F. Förster, “Scanning X-ray microscopy using a laser-plasma source,” Rev. Sci. Instrum. 64, 1478–82 (1993).
[CrossRef]

Buckley, C. J.

A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. Fluck, C. J. Buckley, and F. Förster, “Scanning X-ray microscopy using a laser-plasma source,” Rev. Sci. Instrum. 64, 1478–82 (1993).
[CrossRef]

Burge, R. E.

A. G. Michette, A. M. Rogoyski, and R. E. Burge, “A laser-generated plasma source for x-ray lithography and VSLI,” J. Phys. E 21, 959–65 (1988).
[CrossRef]

Burnett, N. H.

N. H. Burnett and G. D. Enright, “Population inversion in the recombination of optically-ionized plasmas,” IEEE J. Quantum Electron. 26, 1797–1808 (1990).
[CrossRef]

Caprin, C.

T. Auguste, M. Bougeard, C. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999).
[CrossRef]

Chambaret, J. P.

Chériaux, G.

Cobble, J. A.

J. A. Cobble, G. T. Schappert, L. A. Jones, A. J. Taylor, G. A. Kyrala, and R. D. Fulton, “The interaction of a high-irradiance, subpicosecond laser pulse with aluminum: The effects of the prepulse on x-ray production,” J. Appl. Phys. 69, 3369–3371 (1991).
[CrossRef]

Curley, P.

D’Oliveira, P.

S. Hulin, T. Auguste, P. D’Oliveira, P. Monot, S. Jacquemot, L. Bonnet, and E. Lefebvre, “Soft x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen,” Phys. Rev. E 61, 5693–5700 (2000).
[CrossRef]

T. Auguste, M. Bougeard, C. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999).
[CrossRef]

Darpentigny, G.

DaSilva, L. B.

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

Dimauro, L. F.

Ditmire, T.

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A 53, 3379–3402 (1996).
[CrossRef] [PubMed]

Djaoui, A.

M. J. Grout, G. J. Pert, and A. Djaoui, “Propagation effects optical-field-induced gas mixture breakdown for recombination X-ray lasers,” J. Phys. B 31, 197–207 (1998).
[CrossRef]

Donnelly, T.

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A 53, 3379–3402 (1996).
[CrossRef] [PubMed]

Donnelly, T. D.

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

Eder, D. C.

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

D. C. Eder, P. Amendt, and S. C. Wilks, “Optical-field-ionized plasma x-ray lasers,” Phys. Rev. A 45, 6761–6772 (1992).
[CrossRef] [PubMed]

P. Amendt, D. C. Eder, and S. C. Wilks, “X-ray lasing by optical-field-induced ionization,” Phys. Rev. Lett. 66, 2589–2592 (1991).
[CrossRef] [PubMed]

Edwards, J.

O. Willi, G. Kiehn, J. Edwards, V. Barrow, R. A. Smith, J. Wark, and E. Turcu, “observations of high-density plasmas produced with a picosecond high-power KrF Irradiation,” Europhys. Lett. 10, 141–146 (1989).
[CrossRef]

Enright, G. D.

N. H. Burnett and G. D. Enright, “Population inversion in the recombination of optically-ionized plasmas,” IEEE J. Quantum Electron. 26, 1797–1808 (1990).
[CrossRef]

Falcone, R. W.

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A 53, 3379–3402 (1996).
[CrossRef] [PubMed]

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

H. C. Kapteyn, M. M. Murnane, A. Szöke, and R. W. Falcone, “Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering,” Opt. Lett. 16, 490–492 (1991).
[CrossRef] [PubMed]

Fluck, P.

A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. Fluck, C. J. Buckley, and F. Förster, “Scanning X-ray microscopy using a laser-plasma source,” Rev. Sci. Instrum. 64, 1478–82 (1993).
[CrossRef]

Förster, F.

A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. Fluck, C. J. Buckley, and F. Förster, “Scanning X-ray microscopy using a laser-plasma source,” Rev. Sci. Instrum. 64, 1478–82 (1993).
[CrossRef]

Fulton, R. D.

J. A. Cobble, G. T. Schappert, L. A. Jones, A. J. Taylor, G. A. Kyrala, and R. D. Fulton, “The interaction of a high-irradiance, subpicosecond laser pulse with aluminum: The effects of the prepulse on x-ray production,” J. Appl. Phys. 69, 3369–3371 (1991).
[CrossRef]

Grout, M. J.

M. J. Grout, G. J. Pert, and A. Djaoui, “Propagation effects optical-field-induced gas mixture breakdown for recombination X-ray lasers,” J. Phys. B 31, 197–207 (1998).
[CrossRef]

M. J. Grout, K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Optical-field induced gas mixture breakdown for recombination X-ray lasers,” Opt. Commun. 141, 213–220 (1997).
[CrossRef]

Hagena, O. F.

O. F. Hagena and W. Obert, “Cluster formation in expanding supersonic jets: Effect of pressure, temperature, nozzle size, and test gas,” J. Chem. Phys. 56, 1793–1802 (1972).
[CrossRef]

Healy, S. B.

K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Modelling of OFI-plasma recombination x-ray lasers,” Opt. Commun. 140, 165–178 (1997).
[CrossRef]

M. J. Grout, K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Optical-field induced gas mixture breakdown for recombination X-ray lasers,” Opt. Commun. 141, 213–220 (1997).
[CrossRef]

Hulin, S.

S. Hulin, T. Auguste, P. D’Oliveira, P. Monot, S. Jacquemot, L. Bonnet, and E. Lefebvre, “Soft x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen,” Phys. Rev. E 61, 5693–5700 (2000).
[CrossRef]

Jacquemot, S.

S. Hulin, T. Auguste, P. D’Oliveira, P. Monot, S. Jacquemot, L. Bonnet, and E. Lefebvre, “Soft x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen,” Phys. Rev. E 61, 5693–5700 (2000).
[CrossRef]

Janulewicz, K. A.

K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Modelling of OFI-plasma recombination x-ray lasers,” Opt. Commun. 140, 165–178 (1997).
[CrossRef]

M. J. Grout, K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Optical-field induced gas mixture breakdown for recombination X-ray lasers,” Opt. Commun. 141, 213–220 (1997).
[CrossRef]

Jones, L. A.

J. A. Cobble, G. T. Schappert, L. A. Jones, A. J. Taylor, G. A. Kyrala, and R. D. Fulton, “The interaction of a high-irradiance, subpicosecond laser pulse with aluminum: The effects of the prepulse on x-ray production,” J. Appl. Phys. 69, 3369–3371 (1991).
[CrossRef]

Kapteyn, H. C.

Kiehn, G.

O. Willi, G. Kiehn, J. Edwards, V. Barrow, R. A. Smith, J. Wark, and E. Turcu, “observations of high-density plasmas produced with a picosecond high-power KrF Irradiation,” Europhys. Lett. 10, 141–146 (1989).
[CrossRef]

Kühnle, G.

U. Teubner, G. Kühnle, and F. P. Schäfer, “Soft x-ray spectra produced by subpicosecond laser double-pulses,” Appl. Phys. Lett. 59, 2672–2674 (1991).
[CrossRef]

Kyrala, G. A.

J. A. Cobble, G. T. Schappert, L. A. Jones, A. J. Taylor, G. A. Kyrala, and R. D. Fulton, “The interaction of a high-irradiance, subpicosecond laser pulse with aluminum: The effects of the prepulse on x-ray production,” J. Appl. Phys. 69, 3369–3371 (1991).
[CrossRef]

Le-Blanc, C.

Lefebvre, E.

S. Hulin, T. Auguste, P. D’Oliveira, P. Monot, S. Jacquemot, L. Bonnet, and E. Lefebvre, “Soft x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen,” Phys. Rev. E 61, 5693–5700 (2000).
[CrossRef]

London, R. A.

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

MacGowan, B. J.

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

Matthews, D. L.

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

Michette, A. G.

A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. Fluck, C. J. Buckley, and F. Förster, “Scanning X-ray microscopy using a laser-plasma source,” Rev. Sci. Instrum. 64, 1478–82 (1993).
[CrossRef]

A. G. Michette, A. M. Rogoyski, and R. E. Burge, “A laser-generated plasma source for x-ray lithography and VSLI,” J. Phys. E 21, 959–65 (1988).
[CrossRef]

Monot, P.

S. Hulin, T. Auguste, P. D’Oliveira, P. Monot, S. Jacquemot, L. Bonnet, and E. Lefebvre, “Soft x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen,” Phys. Rev. E 61, 5693–5700 (2000).
[CrossRef]

T. Auguste, M. Bougeard, C. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999).
[CrossRef]

Morrison, G. R.

A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. Fluck, C. J. Buckley, and F. Förster, “Scanning X-ray microscopy using a laser-plasma source,” Rev. Sci. Instrum. 64, 1478–82 (1993).
[CrossRef]

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

G. Albrecht, A. Antonetti, and G. Mourou, “Temporal shape analysis of Nd3+:YAG active–passive mode-locked pulses,” Opt. Commun. 40, 59–62 (1981).
[CrossRef]

Murnane, M. M.

Obert, W.

O. F. Hagena and W. Obert, “Cluster formation in expanding supersonic jets: Effect of pressure, temperature, nozzle size, and test gas,” J. Chem. Phys. 56, 1793–1802 (1972).
[CrossRef]

Penetrante, B. M.

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

Perry, M. D.

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A 53, 3379–3402 (1996).
[CrossRef] [PubMed]

Pert, G. J.

M. J. Grout, G. J. Pert, and A. Djaoui, “Propagation effects optical-field-induced gas mixture breakdown for recombination X-ray lasers,” J. Phys. B 31, 197–207 (1998).
[CrossRef]

K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Modelling of OFI-plasma recombination x-ray lasers,” Opt. Commun. 140, 165–178 (1997).
[CrossRef]

M. J. Grout, K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Optical-field induced gas mixture breakdown for recombination X-ray lasers,” Opt. Commun. 141, 213–220 (1997).
[CrossRef]

Rogoyski, A. M.

A. G. Michette, A. M. Rogoyski, and R. E. Burge, “A laser-generated plasma source for x-ray lithography and VSLI,” J. Phys. E 21, 959–65 (1988).
[CrossRef]

Rosen, M. D.

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

Rousseau, P.

Rubenchik, A. M.

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A 53, 3379–3402 (1996).
[CrossRef] [PubMed]

Salin, F.

Schäfer, F. P.

U. Teubner, G. Kühnle, and F. P. Schäfer, “Soft x-ray spectra produced by subpicosecond laser double-pulses,” Appl. Phys. Lett. 59, 2672–2674 (1991).
[CrossRef]

Schappert, G. T.

J. A. Cobble, G. T. Schappert, L. A. Jones, A. J. Taylor, G. A. Kyrala, and R. D. Fulton, “The interaction of a high-irradiance, subpicosecond laser pulse with aluminum: The effects of the prepulse on x-ray production,” J. Appl. Phys. 69, 3369–3371 (1991).
[CrossRef]

Schulz, M. S.

A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. Fluck, C. J. Buckley, and F. Förster, “Scanning X-ray microscopy using a laser-plasma source,” Rev. Sci. Instrum. 64, 1478–82 (1993).
[CrossRef]

Smith, R. A.

O. Willi, G. Kiehn, J. Edwards, V. Barrow, R. A. Smith, J. Wark, and E. Turcu, “observations of high-density plasmas produced with a picosecond high-power KrF Irradiation,” Europhys. Lett. 10, 141–146 (1989).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Strobel, G. L.

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

Szöke, A.

Taylor, A. J.

J. A. Cobble, G. T. Schappert, L. A. Jones, A. J. Taylor, G. A. Kyrala, and R. D. Fulton, “The interaction of a high-irradiance, subpicosecond laser pulse with aluminum: The effects of the prepulse on x-ray production,” J. Appl. Phys. 69, 3369–3371 (1991).
[CrossRef]

Teubner, U.

U. Teubner, G. Kühnle, and F. P. Schäfer, “Soft x-ray spectra produced by subpicosecond laser double-pulses,” Appl. Phys. Lett. 59, 2672–2674 (1991).
[CrossRef]

Turcu, E.

O. Willi, G. Kiehn, J. Edwards, V. Barrow, R. A. Smith, J. Wark, and E. Turcu, “observations of high-density plasmas produced with a picosecond high-power KrF Irradiation,” Europhys. Lett. 10, 141–146 (1989).
[CrossRef]

Turcu, I. C. E.

A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. Fluck, C. J. Buckley, and F. Förster, “Scanning X-ray microscopy using a laser-plasma source,” Rev. Sci. Instrum. 64, 1478–82 (1993).
[CrossRef]

Walker, B.

Wark, J.

O. Willi, G. Kiehn, J. Edwards, V. Barrow, R. A. Smith, J. Wark, and E. Turcu, “observations of high-density plasmas produced with a picosecond high-power KrF Irradiation,” Europhys. Lett. 10, 141–146 (1989).
[CrossRef]

Wilks, S. C.

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

D. C. Eder, P. Amendt, and S. C. Wilks, “Optical-field-ionized plasma x-ray lasers,” Phys. Rev. A 45, 6761–6772 (1992).
[CrossRef] [PubMed]

P. Amendt, D. C. Eder, and S. C. Wilks, “X-ray lasing by optical-field-induced ionization,” Phys. Rev. Lett. 66, 2589–2592 (1991).
[CrossRef] [PubMed]

Willi, O.

O. Willi, G. Kiehn, J. Edwards, V. Barrow, R. A. Smith, J. Wark, and E. Turcu, “observations of high-density plasmas produced with a picosecond high-power KrF Irradiation,” Europhys. Lett. 10, 141–146 (1989).
[CrossRef]

Yamakawa, K.

K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its applications,” IEEE J. Sel. Top. Quantum Electron. 6, 658–675 (2000).
[CrossRef]

Appl. Phys. Lett.

U. Teubner, G. Kühnle, and F. P. Schäfer, “Soft x-ray spectra produced by subpicosecond laser double-pulses,” Appl. Phys. Lett. 59, 2672–2674 (1991).
[CrossRef]

Europhys. Lett.

O. Willi, G. Kiehn, J. Edwards, V. Barrow, R. A. Smith, J. Wark, and E. Turcu, “observations of high-density plasmas produced with a picosecond high-power KrF Irradiation,” Europhys. Lett. 10, 141–146 (1989).
[CrossRef]

IEEE J. Quantum Electron.

N. H. Burnett and G. D. Enright, “Population inversion in the recombination of optically-ionized plasmas,” IEEE J. Quantum Electron. 26, 1797–1808 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its applications,” IEEE J. Sel. Top. Quantum Electron. 6, 658–675 (2000).
[CrossRef]

J. Appl. Phys.

J. A. Cobble, G. T. Schappert, L. A. Jones, A. J. Taylor, G. A. Kyrala, and R. D. Fulton, “The interaction of a high-irradiance, subpicosecond laser pulse with aluminum: The effects of the prepulse on x-ray production,” J. Appl. Phys. 69, 3369–3371 (1991).
[CrossRef]

J. Chem. Phys.

O. F. Hagena and W. Obert, “Cluster formation in expanding supersonic jets: Effect of pressure, temperature, nozzle size, and test gas,” J. Chem. Phys. 56, 1793–1802 (1972).
[CrossRef]

J. Phys. B

M. J. Grout, G. J. Pert, and A. Djaoui, “Propagation effects optical-field-induced gas mixture breakdown for recombination X-ray lasers,” J. Phys. B 31, 197–207 (1998).
[CrossRef]

J. Phys. E

A. G. Michette, A. M. Rogoyski, and R. E. Burge, “A laser-generated plasma source for x-ray lithography and VSLI,” J. Phys. E 21, 959–65 (1988).
[CrossRef]

Opt. Commun.

M. J. Grout, K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Optical-field induced gas mixture breakdown for recombination X-ray lasers,” Opt. Commun. 141, 213–220 (1997).
[CrossRef]

K. A. Janulewicz, S. B. Healy, and G. J. Pert, “Modelling of OFI-plasma recombination x-ray lasers,” Opt. Commun. 140, 165–178 (1997).
[CrossRef]

G. Albrecht, A. Antonetti, and G. Mourou, “Temporal shape analysis of Nd3+:YAG active–passive mode-locked pulses,” Opt. Commun. 40, 59–62 (1981).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Opt. Lett.

Phys. Plasmas

D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. Falcone, and G. L. Strobel, “Tabletop x-ray lasers,” Phys. Plasmas 1, 1744–1752 (1994).
[CrossRef]

Phys. Rev. A

T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A 53, 3379–3402 (1996).
[CrossRef] [PubMed]

D. C. Eder, P. Amendt, and S. C. Wilks, “Optical-field-ionized plasma x-ray lasers,” Phys. Rev. A 45, 6761–6772 (1992).
[CrossRef] [PubMed]

Phys. Rev. E

S. Hulin, T. Auguste, P. D’Oliveira, P. Monot, S. Jacquemot, L. Bonnet, and E. Lefebvre, “Soft x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen,” Phys. Rev. E 61, 5693–5700 (2000).
[CrossRef]

Phys. Rev. Lett.

P. Amendt, D. C. Eder, and S. C. Wilks, “X-ray lasing by optical-field-induced ionization,” Phys. Rev. Lett. 66, 2589–2592 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. Fluck, C. J. Buckley, and F. Förster, “Scanning X-ray microscopy using a laser-plasma source,” Rev. Sci. Instrum. 64, 1478–82 (1993).
[CrossRef]

T. Auguste, M. Bougeard, C. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999).
[CrossRef]

Other

O. F. Hagena, “Cluster beams from nozzle sources,” in Molecular Beams and Low Density Gas Dynamics, P. P. Wegener, ed. (Marcel Dekker, New York, 1974), pp. 93–167.

Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the 10-TW laser system and the 50-GW probe beam.

Fig. 2
Fig. 2

Pulse shape measured with a scanning autocorrelator. The solid curve is a Gaussian fit. The pulse duration is 65±5 fs.

Fig. 3
Fig. 3

Schematic diagram of the third-order cross correlator used to measure the intensity–contrast ratio.

Fig. 4
Fig. 4

Intensity–contrast ratio measured on a picosecond time scale with the third-order correlator. The signal is normalized to the peak intensity.

Fig. 5
Fig. 5

Intensity–contrast ratio measured on a nanosecond time scale with the third-order correlator. The signal is normalized to the peak intensity.

Fig. 6
Fig. 6

Experimental setup used to investigate the plasma dynamics.

Fig. 7
Fig. 7

Two-dimensional maps of the plasma density measured for a pump-probe delay of (a) -30 ps, (b) 0 ps, (c) +0.8 ps, (d) +2.5 ps, (e) +3.3 ps, (f) +4.6 ps, (g) +10 ps, (h) +300 ps, and (i) +3.8 ns. The density is in units of 1018 cm-3. The laser propagates from left to right. The maximum density for Δt=+2.5 ps is 1020 cm-3. The measurement is accurate to within ±5%.

Fig. 8
Fig. 8

Shock position versus time measured at z=0.8 mm (open circles) and calculated for Te=400 (dashed curve), 500 (solid curve) and 600 eV (dotted–dashed curve). The best fit of the data is obtained for Te=500 eV.

Metrics