Abstract

Experimental measurements are presented of the stimulated Brillouin scattering (SBS) threshold in a dual-clad fiber amplifier with a single-mode core and an approximation is explored for calculation of the SBS threshold and numerical solutions for the coupled differential equations. Good agreement is shown between modeled and experimental data.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
    [CrossRef]
  2. M. Auerbach, D. Wandt, C. Fallnich, H. Welling, and S. Unger, “High-power tunable narrow linewidth ytterbium-doped double-clad fiber laser,” Opt. Commun. 195, 437–441 (2001).
    [CrossRef]
  3. J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-chavez, A. B. Grudinin, and J. D. Minelly, “Broad-band diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
    [CrossRef]
  4. R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.
  5. S. Höfer, A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R. Müller, and I. Freitag, “Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power,” Opt. Lett. 26, 1326–1328 (2001).
    [CrossRef]
  6. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent lightwave amplification and stimulated Brillouin scattering in an erbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 4, 564–567 (1992).
    [CrossRef]
  7. P. C. Wait, T. P. Newson, C. N. Pannell, and P. St. J. Russell, “Multiple Brillouin Stokes orders in a 60 m erbium-doped fiber amplifier under pulsed excitation,” Opt. Commun. 106, 91–94 (1994).
    [CrossRef]
  8. I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tünnermann, “All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm,” Opt. Lett. 24, 469–471 (1999).
    [CrossRef]
  9. J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” in Fiber Laser Sources and Amplifiers II, M. J. Digonnet, ed, Proc. SPIE 1373, 168–186 (1990).
    [CrossRef]
  10. C. R. Giles and D. di Giovanni, “Spectral dependence of gain and noise in erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 797–800 (1990).
    [CrossRef]
  11. C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
    [CrossRef]
  12. R. Oron and A. A. Hardy, “Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers,” J. Opt. Soc. Am. B 16, 695–701 (1999).
    [CrossRef]
  13. A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
    [CrossRef]
  14. M. F. Ferreira, “Effects of stimulated Brillouin scattering on distributed amplifiers,” Electron. Lett. 30, 40–42 (1994).
    [CrossRef]
  15. M. F. Ferreira, “Impact of stimulated Brillouin scattering in optical fibers with distributed gain,” J. Lightwave Technol. 13, 1692–1697 (1995).
    [CrossRef]
  16. C. N. Pannell, P. St. J. Russell, and T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effects of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
    [CrossRef]
  17. S. L. Zhang and J. J. O’Reilly, “Effect of stimulated Brillouin scattering on distributed erbium-doped amplifiers,” IEEE Photonics Technol. Lett. 5, 537–539 (1993).
    [CrossRef]
  18. G. T. Moore, “A model for diffraction-limited high-power multimode fiber amplifiers using seeded stimulated Brillouin scattering phase conjugation,” IEEE J. Quantum Electron. 37, 781–789 (2001).
    [CrossRef]
  19. E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 65, 544–548 (1987).
    [CrossRef]
  20. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]
  21. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing (Cambridge University, Cambridge, England, 1997).
  22. J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Society for Industrial and Applied Mathematics, Philadelphia, 1996).
  23. F. Patel, “Rare-earth doped media for applications in waveguide lasers,” Ph.D. dissertation (University of California, Davis, Davis, Calif., 2000).
  24. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  25. R. V. Johnson and J. H. Marburger, “Relaxation oscillations in stimulated Raman and Brillouin scattering,” Phys. Rev. A 4, 1175–1182 (1971).
    [CrossRef]
  26. I. Bar-Joseph, A. A. Friesem, E. Lichtman, and R. G. Waarts, “Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers,” J. Opt. Soc. Am. B 2, 1606–1611 (1985).
    [CrossRef]
  27. R. W. Boyd, K. Rza̧żewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
    [CrossRef] [PubMed]
  28. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
    [CrossRef] [PubMed]
  29. R. G. Harrison, J. S. Uppal, A. Johnstone, and J. V. Moloney, “Evidence of chaotic stimulated Brillouin scattering,” Phys. Rev. Lett. 65, 167–170 (1990).
    [CrossRef] [PubMed]
  30. R. G. Harrison, P. M. Ripley, and W. Lu, “Observation and characterization of deterministic chaos in stimulated Brillouin scattering with weak feedback,” Phys. Rev. A 49, R24–R27 (1994).
    [CrossRef] [PubMed]
  31. P. Canci, P. Zeppini, P. de Natale, S. Teccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B 70, 763–768 (2000).
    [CrossRef]

2001 (3)

M. Auerbach, D. Wandt, C. Fallnich, H. Welling, and S. Unger, “High-power tunable narrow linewidth ytterbium-doped double-clad fiber laser,” Opt. Commun. 195, 437–441 (2001).
[CrossRef]

G. T. Moore, “A model for diffraction-limited high-power multimode fiber amplifiers using seeded stimulated Brillouin scattering phase conjugation,” IEEE J. Quantum Electron. 37, 781–789 (2001).
[CrossRef]

S. Höfer, A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R. Müller, and I. Freitag, “Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power,” Opt. Lett. 26, 1326–1328 (2001).
[CrossRef]

2000 (1)

P. Canci, P. Zeppini, P. de Natale, S. Teccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B 70, 763–768 (2000).
[CrossRef]

1999 (4)

R. Oron and A. A. Hardy, “Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers,” J. Opt. Soc. Am. B 16, 695–701 (1999).
[CrossRef]

I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tünnermann, “All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm,” Opt. Lett. 24, 469–471 (1999).
[CrossRef]

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-chavez, A. B. Grudinin, and J. D. Minelly, “Broad-band diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

1997 (2)

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

1995 (1)

M. F. Ferreira, “Impact of stimulated Brillouin scattering in optical fibers with distributed gain,” J. Lightwave Technol. 13, 1692–1697 (1995).
[CrossRef]

1994 (3)

M. F. Ferreira, “Effects of stimulated Brillouin scattering on distributed amplifiers,” Electron. Lett. 30, 40–42 (1994).
[CrossRef]

P. C. Wait, T. P. Newson, C. N. Pannell, and P. St. J. Russell, “Multiple Brillouin Stokes orders in a 60 m erbium-doped fiber amplifier under pulsed excitation,” Opt. Commun. 106, 91–94 (1994).
[CrossRef]

R. G. Harrison, P. M. Ripley, and W. Lu, “Observation and characterization of deterministic chaos in stimulated Brillouin scattering with weak feedback,” Phys. Rev. A 49, R24–R27 (1994).
[CrossRef] [PubMed]

1993 (2)

C. N. Pannell, P. St. J. Russell, and T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effects of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
[CrossRef]

S. L. Zhang and J. J. O’Reilly, “Effect of stimulated Brillouin scattering on distributed erbium-doped amplifiers,” IEEE Photonics Technol. Lett. 5, 537–539 (1993).
[CrossRef]

1992 (1)

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent lightwave amplification and stimulated Brillouin scattering in an erbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 4, 564–567 (1992).
[CrossRef]

1991 (2)

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

1990 (4)

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” in Fiber Laser Sources and Amplifiers II, M. J. Digonnet, ed, Proc. SPIE 1373, 168–186 (1990).
[CrossRef]

C. R. Giles and D. di Giovanni, “Spectral dependence of gain and noise in erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 797–800 (1990).
[CrossRef]

R. G. Harrison, J. S. Uppal, A. Johnstone, and J. V. Moloney, “Evidence of chaotic stimulated Brillouin scattering,” Phys. Rev. Lett. 65, 167–170 (1990).
[CrossRef] [PubMed]

R. W. Boyd, K. Rza̧żewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

1987 (1)

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 65, 544–548 (1987).
[CrossRef]

1985 (1)

1971 (1)

R. V. Johnson and J. H. Marburger, “Relaxation oscillations in stimulated Raman and Brillouin scattering,” Phys. Rev. A 4, 1175–1182 (1971).
[CrossRef]

Alvarez-chavez, J. A.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-chavez, A. B. Grudinin, and J. D. Minelly, “Broad-band diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

Auerbach, M.

M. Auerbach, D. Wandt, C. Fallnich, H. Welling, and S. Unger, “High-power tunable narrow linewidth ytterbium-doped double-clad fiber laser,” Opt. Commun. 195, 437–441 (2001).
[CrossRef]

Auge, J. C.

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” in Fiber Laser Sources and Amplifiers II, M. J. Digonnet, ed, Proc. SPIE 1373, 168–186 (1990).
[CrossRef]

Bar-Joseph, I.

Bicknese, S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Bousselet, P.

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” in Fiber Laser Sources and Amplifiers II, M. J. Digonnet, ed, Proc. SPIE 1373, 168–186 (1990).
[CrossRef]

Boyd, R. W.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

R. W. Boyd, K. Rza̧żewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

Canci, P.

P. Canci, P. Zeppini, P. de Natale, S. Teccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B 70, 763–768 (2000).
[CrossRef]

de Natale, P.

P. Canci, P. Zeppini, P. de Natale, S. Teccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B 70, 763–768 (2000).
[CrossRef]

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

di Giovanni, D.

C. R. Giles and D. di Giovanni, “Spectral dependence of gain and noise in erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 797–800 (1990).
[CrossRef]

Dohle, R.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Dominic, V.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Fallnich, C.

Ferreira, M. F.

M. F. Ferreira, “Impact of stimulated Brillouin scattering in optical fibers with distributed gain,” J. Lightwave Technol. 13, 1692–1697 (1995).
[CrossRef]

M. F. Ferreira, “Effects of stimulated Brillouin scattering on distributed amplifiers,” Electron. Lett. 30, 40–42 (1994).
[CrossRef]

Fevrier, H. A.

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” in Fiber Laser Sources and Amplifiers II, M. J. Digonnet, ed, Proc. SPIE 1373, 168–186 (1990).
[CrossRef]

Freitag, I.

Friesem, A. A.

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 65, 544–548 (1987).
[CrossRef]

I. Bar-Joseph, A. A. Friesem, E. Lichtman, and R. G. Waarts, “Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers,” J. Opt. Soc. Am. B 2, 1606–1611 (1985).
[CrossRef]

Gaeta, A. L.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

C. R. Giles and D. di Giovanni, “Spectral dependence of gain and noise in erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 797–800 (1990).
[CrossRef]

Grudinin, A. B.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-chavez, A. B. Grudinin, and J. D. Minelly, “Broad-band diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

Hardy, A.

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

Hardy, A. A.

Harrison, R. G.

R. G. Harrison, P. M. Ripley, and W. Lu, “Observation and characterization of deterministic chaos in stimulated Brillouin scattering with weak feedback,” Phys. Rev. A 49, R24–R27 (1994).
[CrossRef] [PubMed]

R. G. Harrison, J. S. Uppal, A. Johnstone, and J. V. Moloney, “Evidence of chaotic stimulated Brillouin scattering,” Phys. Rev. Lett. 65, 167–170 (1990).
[CrossRef] [PubMed]

Höfer, S.

Horiguchi, T.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent lightwave amplification and stimulated Brillouin scattering in an erbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 4, 564–567 (1992).
[CrossRef]

Jetschke, S.

Johnson, R. V.

R. V. Johnson and J. H. Marburger, “Relaxation oscillations in stimulated Raman and Brillouin scattering,” Phys. Rev. A 4, 1175–1182 (1971).
[CrossRef]

Johnstone, A.

R. G. Harrison, J. S. Uppal, A. Johnstone, and J. V. Moloney, “Evidence of chaotic stimulated Brillouin scattering,” Phys. Rev. Lett. 65, 167–170 (1990).
[CrossRef] [PubMed]

Koyamada, Y.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent lightwave amplification and stimulated Brillouin scattering in an erbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 4, 564–567 (1992).
[CrossRef]

Laporta, P.

P. Canci, P. Zeppini, P. de Natale, S. Teccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B 70, 763–768 (2000).
[CrossRef]

Lichtman, E.

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 65, 544–548 (1987).
[CrossRef]

I. Bar-Joseph, A. A. Friesem, E. Lichtman, and R. G. Waarts, “Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers,” J. Opt. Soc. Am. B 2, 1606–1611 (1985).
[CrossRef]

Liem, A.

Limpert, J.

Lu, W.

R. G. Harrison, P. M. Ripley, and W. Lu, “Observation and characterization of deterministic chaos in stimulated Brillouin scattering with weak feedback,” Phys. Rev. A 49, R24–R27 (1994).
[CrossRef] [PubMed]

MacCormack, S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Marburger, J. H.

R. V. Johnson and J. H. Marburger, “Relaxation oscillations in stimulated Raman and Brillouin scattering,” Phys. Rev. A 4, 1175–1182 (1971).
[CrossRef]

Marcerou, J. F.

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” in Fiber Laser Sources and Amplifiers II, M. J. Digonnet, ed, Proc. SPIE 1373, 168–186 (1990).
[CrossRef]

Minelly, J. D.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-chavez, A. B. Grudinin, and J. D. Minelly, “Broad-band diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

Moloney, J. V.

R. G. Harrison, J. S. Uppal, A. Johnstone, and J. V. Moloney, “Evidence of chaotic stimulated Brillouin scattering,” Phys. Rev. Lett. 65, 167–170 (1990).
[CrossRef] [PubMed]

Moore, G. T.

G. T. Moore, “A model for diffraction-limited high-power multimode fiber amplifiers using seeded stimulated Brillouin scattering phase conjugation,” IEEE J. Quantum Electron. 37, 781–789 (2001).
[CrossRef]

Müller, H.-R.

Narum, P.

R. W. Boyd, K. Rza̧żewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

Newson, T. P.

P. C. Wait, T. P. Newson, C. N. Pannell, and P. St. J. Russell, “Multiple Brillouin Stokes orders in a 60 m erbium-doped fiber amplifier under pulsed excitation,” Opt. Commun. 106, 91–94 (1994).
[CrossRef]

C. N. Pannell, P. St. J. Russell, and T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effects of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Nilsson, J.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-chavez, A. B. Grudinin, and J. D. Minelly, “Broad-band diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

O’Reilly, J. J.

S. L. Zhang and J. J. O’Reilly, “Effect of stimulated Brillouin scattering on distributed erbium-doped amplifiers,” IEEE Photonics Technol. Lett. 5, 537–539 (1993).
[CrossRef]

Oron, R.

Pannell, C. N.

P. C. Wait, T. P. Newson, C. N. Pannell, and P. St. J. Russell, “Multiple Brillouin Stokes orders in a 60 m erbium-doped fiber amplifier under pulsed excitation,” Opt. Commun. 106, 91–94 (1994).
[CrossRef]

C. N. Pannell, P. St. J. Russell, and T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effects of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
[CrossRef]

Plamann, K.

Ramos, J.

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” in Fiber Laser Sources and Amplifiers II, M. J. Digonnet, ed, Proc. SPIE 1373, 168–186 (1990).
[CrossRef]

Renaud, C. C.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-chavez, A. B. Grudinin, and J. D. Minelly, “Broad-band diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

Ripley, P. M.

R. G. Harrison, P. M. Ripley, and W. Lu, “Observation and characterization of deterministic chaos in stimulated Brillouin scattering with weak feedback,” Phys. Rev. A 49, R24–R27 (1994).
[CrossRef] [PubMed]

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Russell, P. St. J.

P. C. Wait, T. P. Newson, C. N. Pannell, and P. St. J. Russell, “Multiple Brillouin Stokes orders in a 60 m erbium-doped fiber amplifier under pulsed excitation,” Opt. Commun. 106, 91–94 (1994).
[CrossRef]

C. N. Pannell, P. St. J. Russell, and T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effects of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
[CrossRef]

Rza¸zewski, K.

R. W. Boyd, K. Rza̧żewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

Sanders, S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Shimizu, K.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent lightwave amplification and stimulated Brillouin scattering in an erbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 4, 564–567 (1992).
[CrossRef]

Sousa, J. M.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-chavez, A. B. Grudinin, and J. D. Minelly, “Broad-band diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

Teccheo, S.

P. Canci, P. Zeppini, P. de Natale, S. Teccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B 70, 763–768 (2000).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Tünnermann, A.

Unger, S.

S. Höfer, A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R. Müller, and I. Freitag, “Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power,” Opt. Lett. 26, 1326–1328 (2001).
[CrossRef]

M. Auerbach, D. Wandt, C. Fallnich, H. Welling, and S. Unger, “High-power tunable narrow linewidth ytterbium-doped double-clad fiber laser,” Opt. Commun. 195, 437–441 (2001).
[CrossRef]

Uppal, J. S.

R. G. Harrison, J. S. Uppal, A. Johnstone, and J. V. Moloney, “Evidence of chaotic stimulated Brillouin scattering,” Phys. Rev. Lett. 65, 167–170 (1990).
[CrossRef] [PubMed]

Waarts, R.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Waarts, R. G.

Wait, P. C.

P. C. Wait, T. P. Newson, C. N. Pannell, and P. St. J. Russell, “Multiple Brillouin Stokes orders in a 60 m erbium-doped fiber amplifier under pulsed excitation,” Opt. Commun. 106, 91–94 (1994).
[CrossRef]

Wandt, D.

M. Auerbach, D. Wandt, C. Fallnich, H. Welling, and S. Unger, “High-power tunable narrow linewidth ytterbium-doped double-clad fiber laser,” Opt. Commun. 195, 437–441 (2001).
[CrossRef]

Welling, H.

Wolak, E.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Yeh, P. S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Zawischa, I.

Zellmer, H.

Zeppini, P.

P. Canci, P. Zeppini, P. de Natale, S. Teccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B 70, 763–768 (2000).
[CrossRef]

Zhang, S. L.

S. L. Zhang and J. J. O’Reilly, “Effect of stimulated Brillouin scattering on distributed erbium-doped amplifiers,” IEEE Photonics Technol. Lett. 5, 537–539 (1993).
[CrossRef]

Zucker, E.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Appl. Phys. B (1)

P. Canci, P. Zeppini, P. de Natale, S. Teccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B 70, 763–768 (2000).
[CrossRef]

Electron. Lett. (2)

M. F. Ferreira, “Effects of stimulated Brillouin scattering on distributed amplifiers,” Electron. Lett. 30, 40–42 (1994).
[CrossRef]

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. T. Moore, “A model for diffraction-limited high-power multimode fiber amplifiers using seeded stimulated Brillouin scattering phase conjugation,” IEEE J. Quantum Electron. 37, 781–789 (2001).
[CrossRef]

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (4)

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-chavez, A. B. Grudinin, and J. D. Minelly, “Broad-band diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

C. R. Giles and D. di Giovanni, “Spectral dependence of gain and noise in erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 797–800 (1990).
[CrossRef]

S. L. Zhang and J. J. O’Reilly, “Effect of stimulated Brillouin scattering on distributed erbium-doped amplifiers,” IEEE Photonics Technol. Lett. 5, 537–539 (1993).
[CrossRef]

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent lightwave amplification and stimulated Brillouin scattering in an erbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 4, 564–567 (1992).
[CrossRef]

J. Lightwave Technol. (3)

M. F. Ferreira, “Impact of stimulated Brillouin scattering in optical fibers with distributed gain,” J. Lightwave Technol. 13, 1692–1697 (1995).
[CrossRef]

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (3)

P. C. Wait, T. P. Newson, C. N. Pannell, and P. St. J. Russell, “Multiple Brillouin Stokes orders in a 60 m erbium-doped fiber amplifier under pulsed excitation,” Opt. Commun. 106, 91–94 (1994).
[CrossRef]

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 65, 544–548 (1987).
[CrossRef]

M. Auerbach, D. Wandt, C. Fallnich, H. Welling, and S. Unger, “High-power tunable narrow linewidth ytterbium-doped double-clad fiber laser,” Opt. Commun. 195, 437–441 (2001).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (4)

R. W. Boyd, K. Rza̧żewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

R. G. Harrison, P. M. Ripley, and W. Lu, “Observation and characterization of deterministic chaos in stimulated Brillouin scattering with weak feedback,” Phys. Rev. A 49, R24–R27 (1994).
[CrossRef] [PubMed]

R. V. Johnson and J. H. Marburger, “Relaxation oscillations in stimulated Raman and Brillouin scattering,” Phys. Rev. A 4, 1175–1182 (1971).
[CrossRef]

Phys. Rev. Lett. (1)

R. G. Harrison, J. S. Uppal, A. Johnstone, and J. V. Moloney, “Evidence of chaotic stimulated Brillouin scattering,” Phys. Rev. Lett. 65, 167–170 (1990).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” in Fiber Laser Sources and Amplifiers II, M. J. Digonnet, ed, Proc. SPIE 1373, 168–186 (1990).
[CrossRef]

Other (5)

R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing (Cambridge University, Cambridge, England, 1997).

J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Society for Industrial and Applied Mathematics, Philadelphia, 1996).

F. Patel, “Rare-earth doped media for applications in waveguide lasers,” Ph.D. dissertation (University of California, Davis, Davis, Calif., 2000).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Modeled data that depict the evolution of signal power and the power for multiple Stokes orders along the fiber length for 10 W of pump power. Power is read from the left scale. The fractional inversion is read from the right scale.

Fig. 2
Fig. 2

Graphic solution to Eq. (12) that shows the insensitivity of the SBS threshold to the fiber length. The solid line represents the right-hand side of the equation. The dashed, dotted, and dash–dot curves represent the left-hand side of the equation for lengths of 5, 50, and 500 m.

Fig. 3
Fig. 3

Experimental apparatus. The slanted dotted line shows the path of the signal and the SBS. The detector is either an OSA or a 40-GHz photodetector.

Fig. 4
Fig. 4

Amplifier performance for a 50-m fiber. The circles, down triangles, and left triangles represent the total, signal, and Stokes powers when the polarization paddles are adjusted for maximum SBS gain. The squares, up triangles, and right triangles represent the minimum SBS gain.

Fig. 5
Fig. 5

Amplifier performance for a 75-m fiber. The circles, down triangles, and left triangles represent the total, signal, and Stokes powers when the polarization paddles are adjusted for maximum SBS gain. The squares, up triangles, and right triangles represent the minimum SBS gain.

Fig. 6
Fig. 6

Spectra (rf) of the counterpropagating light from the 40-GHz detector. The low-frequency spectrum is the amplitude noise caused by SBS. The high-frequency peak is the beat note between the signal and the Stokes.

Fig. 7
Fig. 7

Comparison of theoretical (solid curve), modeled (triangles and dotted line), and experimental (circles) SBS thresholds. Inset: the same data on an expanded scale. The experimental points agree well with both the theoretical and the model data.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

dPi±dz=±[(σie+σia)n2-σia]N0ΓiPi±αiPi±.
±gBΓBPi±(Pi-1-Pi+1)±gSB(Pi-1-Pi±),
gB=gB 11+Δνi/ΔνB,
dP1-dz=-[(σ1e+σ1a)n2-σ1a]N0Γ1P1-+α1P1-,
dP2+dz=+[(σ2e+σ2a)n2-σ2a]N0Γ2P2+-α2P2+-gBΓBP2+P3--gSBP2+,
dP3-dz=-[(σ3e+σ3a)n3-σ3a]N0Γ3P3-+α3P3+-gBΓBP2+P3--gSBP2+.
n2=iσiaΓi(Pi++Pi-)(Ahνi)-11τ2+i(σie+σia)Γi(Pi++Pi-)(Ahνi)-1,
dPsdz=gPs-gBΓBPsPB,
dPBdz=-gPB-gBΓBPsPB.
Ps(z)=Ps(0)exp(gz).
lnPB(L)PB(0)=-gL-gBΓBgPs(0)[exp(gL)-1].
lnηPNL-ln(G) ln(G)gBΓB11-G-1=.

Metrics