Abstract

We present an experimental and a theoretical analysis of the operation characteristics of a femtosecond optical parametric oscillator (OPO) based on periodically poled LiNbO3 (PPLN). It provides bright visible pulses through second-harmonic generation (SHG) of the signal and sum-frequency generation (SFG) between the signal and the pump, simultaneously with the parametric oscillation in the near IR. Using a duty cycle of the poling period of approximately 56%, we achieved strong enhancement of even-order quasi-phase-matched (QPM) SHG and SFG, whereas the reduction in the efficiencies of odd-order QPM processes is negligible. Femtosecond pulses with output powers of up to 14 mW in the blue, 12 mW in the green, and 18 mW in the red were obtained for a pump power of only 480 mW. The tuning ranges extended from 460 nm to 500 nm and from 520 nm to 660 nm for SFG between the pump and signal and SHG of the signal, respectively, with at least 2-mW output power. Our work demonstrates that proper choice of the duty cycle of the poling period allows exploitation of higher-order QPM for intracavity SHG and SFG processes in PPLN OPOs.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638–644 (1994).
    [CrossRef]
  2. R. J. Ellingson and C. L. Tang, “High-power, high-repetition-rate femtosecond pulses tunable in the visible,” Opt. Lett. 18, 438–440 (1993).
    [CrossRef] [PubMed]
  3. T. F. Albrecht, J. H. H. Sandmann, J. Feldmann, W. Stolz, E. O. Göbel, H. Hillmer, R. Lösch, and W. Schlapp, “Design and application of a femtosecond optical parametric oscillator for time-resolved spectroscopy of semiconductor heterostructures,” Appl. Phys. B 60, 459–467 (1995).
    [CrossRef]
  4. A. Shirakawa, H. W. Mao, and T. Kobayashi, “Highly efficient generation of blue-orange femtosecond pulses from intracavity-frequency-mixed optical parametric oscillator,” Opt. Commun. 123, 121–128 (1996).
    [CrossRef]
  5. E. C. Cheung, K. Koch, and G. T. Moore, “Frequency upconversion by phase-matched sum-frequency generation in an optical parametric oscillator,” Opt. Lett. 19, 1967–1969 (1994).
    [CrossRef] [PubMed]
  6. J. Hebling, E. J. Mayer, J. Kuhl, and R. Szipöcs, “Chirped-mirror dispersion-compensated femtosecond optical parametric oscillator,” Opt. Lett. 20, 919–921 (1995).
    [CrossRef] [PubMed]
  7. T. Kartaloglu, K. G. Köprülü, and O. Aytür, “Phase-matched self-doubling optical parametric oscillator,” Opt. Lett. 22, 280–282 (1997).
    [CrossRef]
  8. K. G. Köprülü, T. Kartaloglu, Y. Dikmelik, and O. Aytür, “Single-crystal sum-frequency-generating optical parametric oscillator,” J. Opt. Soc. Am. B 16, 1546–1552 (1999).
    [CrossRef]
  9. C. McGowan, D. T. Reid, Z. E. Penman, M. Ebrahimzadeh, and W. Sibbett, “Femtosecond optical parametric oscillator based on periodically poled lithium niobate,” J. Opt. Soc. Am. B 15, 694–701 (1998).
    [CrossRef]
  10. S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1996).
    [CrossRef]
  11. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscil-lator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
    [CrossRef]
  12. Y. Qin, Y. Zhu, S. Zhu, and N. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
    [CrossRef]
  13. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
    [CrossRef] [PubMed]
  14. P. Loza-Alvarez, D. T. Reid, P. Faller, M. Ebrahimzadeh, and W. Sibbett, “Simultaneous second-harmonic generation and femtosecond-pulse compression in aperiodically poled KTiOPO4 with RbTiOAsO4-based optical parametric oscillator,” J. Opt. Soc. Am. B 16, 1553–1560 (1999).
    [CrossRef]
  15. J. Hebling, H. Giessen, S. Linden, and J. Kuhl, “Mirror-dispersion-compensated femtosecond optical parametric oscillator,” Opt. Commun. 141, 229–236 (1997).
    [CrossRef]
  16. J. Hebling, X. P. Zhang, H. Giessen, J. Kuhl, and J. Seres, “Pulse characteristics of an optical parametric oscillator pumped by sub-30-fs light pulses,” Opt. Lett. 25, 1055–1057 (2000).
    [CrossRef]
  17. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  18. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillator in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  19. www.ntandc.de.
  20. A. Nebel, C. Fallnich, R. Beigang, and R. Wallenstein, “Noncritically phase-matched continuous-wave mode-locked singly resonant optical parametric oscillator synchronously pumped by a Ti:sapphire laser,” J. Opt. Soc. Am. B 10, 2195–2200 (1993).
    [CrossRef]
  21. J. Seres and J. Hebling, “Nonstationary theory of synchronously pumped femtosecond optical parametric oscillators,” J. Opt. Soc. Am. B 17, 741–750 (2000).
    [CrossRef]
  22. D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
    [CrossRef]
  23. T. Kartaloglu, K. G. Köprülü, and O. Aytür, “Femtosecond optical parametric oscillator based on periodically poled KTiOPO4,” Opt. Lett. 23, 61–63 (1998).
    [CrossRef]
  24. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996).
  25. J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator,” Opt. Commun. 104, 419–430 (1993).
    [CrossRef]

2000 (2)

1999 (2)

1998 (3)

1997 (4)

M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
[CrossRef] [PubMed]

J. Hebling, H. Giessen, S. Linden, and J. Kuhl, “Mirror-dispersion-compensated femtosecond optical parametric oscillator,” Opt. Commun. 141, 229–236 (1997).
[CrossRef]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscil-lator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

T. Kartaloglu, K. G. Köprülü, and O. Aytür, “Phase-matched self-doubling optical parametric oscillator,” Opt. Lett. 22, 280–282 (1997).
[CrossRef]

1996 (2)

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1996).
[CrossRef]

A. Shirakawa, H. W. Mao, and T. Kobayashi, “Highly efficient generation of blue-orange femtosecond pulses from intracavity-frequency-mixed optical parametric oscillator,” Opt. Commun. 123, 121–128 (1996).
[CrossRef]

1995 (3)

1994 (2)

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638–644 (1994).
[CrossRef]

E. C. Cheung, K. Koch, and G. T. Moore, “Frequency upconversion by phase-matched sum-frequency generation in an optical parametric oscillator,” Opt. Lett. 19, 1967–1969 (1994).
[CrossRef] [PubMed]

1993 (3)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1989 (1)

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Albrecht, T. F.

T. F. Albrecht, J. H. H. Sandmann, J. Feldmann, W. Stolz, E. O. Göbel, H. Hillmer, R. Lösch, and W. Schlapp, “Design and application of a femtosecond optical parametric oscillator for time-resolved spectroscopy of semiconductor heterostructures,” Appl. Phys. B 60, 459–467 (1995).
[CrossRef]

Arbore, M. A.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscil-lator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
[CrossRef] [PubMed]

Aytür, O.

Beigang, R.

Bosenberg, W. R.

Burr, K. C.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscil-lator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

Butterworth, S. D.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillator in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Cheung, E. C.

Dikmelik, Y.

Driscoll, T. J.

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638–644 (1994).
[CrossRef]

Dudley, J. M.

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator,” Opt. Commun. 104, 419–430 (1993).
[CrossRef]

Ebrahimzadeh, M.

Eckardt, R. C.

Edelstein, D. C.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Ellingson, R. J.

Faller, P.

Fallnich, C.

Fejer, M. M.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscil-lator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
[CrossRef] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillator in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Feldmann, J.

T. F. Albrecht, J. H. H. Sandmann, J. Feldmann, W. Stolz, E. O. Göbel, H. Hillmer, R. Lösch, and W. Schlapp, “Design and application of a femtosecond optical parametric oscillator for time-resolved spectroscopy of semiconductor heterostructures,” Appl. Phys. B 60, 459–467 (1995).
[CrossRef]

Gale, G. M.

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638–644 (1994).
[CrossRef]

Giessen, H.

J. Hebling, X. P. Zhang, H. Giessen, J. Kuhl, and J. Seres, “Pulse characteristics of an optical parametric oscillator pumped by sub-30-fs light pulses,” Opt. Lett. 25, 1055–1057 (2000).
[CrossRef]

J. Hebling, H. Giessen, S. Linden, and J. Kuhl, “Mirror-dispersion-compensated femtosecond optical parametric oscillator,” Opt. Commun. 141, 229–236 (1997).
[CrossRef]

Göbel, E. O.

T. F. Albrecht, J. H. H. Sandmann, J. Feldmann, W. Stolz, E. O. Göbel, H. Hillmer, R. Lösch, and W. Schlapp, “Design and application of a femtosecond optical parametric oscillator for time-resolved spectroscopy of semiconductor heterostructures,” Appl. Phys. B 60, 459–467 (1995).
[CrossRef]

Hache, F.

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638–644 (1994).
[CrossRef]

Hanna, D. C.

Hebling, J.

Hillmer, H.

T. F. Albrecht, J. H. H. Sandmann, J. Feldmann, W. Stolz, E. O. Göbel, H. Hillmer, R. Lösch, and W. Schlapp, “Design and application of a femtosecond optical parametric oscillator for time-resolved spectroscopy of semiconductor heterostructures,” Appl. Phys. B 60, 459–467 (1995).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kartaloglu, T.

Kobayashi, T.

A. Shirakawa, H. W. Mao, and T. Kobayashi, “Highly efficient generation of blue-orange femtosecond pulses from intracavity-frequency-mixed optical parametric oscillator,” Opt. Commun. 123, 121–128 (1996).
[CrossRef]

Koch, K.

Köprülü, K. G.

Kuhl, J.

Linden, S.

J. Hebling, H. Giessen, S. Linden, and J. Kuhl, “Mirror-dispersion-compensated femtosecond optical parametric oscillator,” Opt. Commun. 141, 229–236 (1997).
[CrossRef]

Lösch, R.

T. F. Albrecht, J. H. H. Sandmann, J. Feldmann, W. Stolz, E. O. Göbel, H. Hillmer, R. Lösch, and W. Schlapp, “Design and application of a femtosecond optical parametric oscillator for time-resolved spectroscopy of semiconductor heterostructures,” Appl. Phys. B 60, 459–467 (1995).
[CrossRef]

Loza-Alvarez, P.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Mao, H. W.

A. Shirakawa, H. W. Mao, and T. Kobayashi, “Highly efficient generation of blue-orange femtosecond pulses from intracavity-frequency-mixed optical parametric oscillator,” Opt. Commun. 123, 121–128 (1996).
[CrossRef]

Marco, O.

Mayer, E. J.

McGowan, C.

Ming, N.

Y. Qin, Y. Zhu, S. Zhu, and N. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
[CrossRef]

Moore, G. T.

Myers, L. E.

Nebel, A.

Penman, Z. E.

Pierce, J. W.

Qin, Y.

Y. Qin, Y. Zhu, S. Zhu, and N. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
[CrossRef]

Reid, D. T.

Sandmann, J. H. H.

T. F. Albrecht, J. H. H. Sandmann, J. Feldmann, W. Stolz, E. O. Göbel, H. Hillmer, R. Lösch, and W. Schlapp, “Design and application of a femtosecond optical parametric oscillator for time-resolved spectroscopy of semiconductor heterostructures,” Appl. Phys. B 60, 459–467 (1995).
[CrossRef]

Schlapp, W.

T. F. Albrecht, J. H. H. Sandmann, J. Feldmann, W. Stolz, E. O. Göbel, H. Hillmer, R. Lösch, and W. Schlapp, “Design and application of a femtosecond optical parametric oscillator for time-resolved spectroscopy of semiconductor heterostructures,” Appl. Phys. B 60, 459–467 (1995).
[CrossRef]

Seres, J.

Shirakawa, A.

A. Shirakawa, H. W. Mao, and T. Kobayashi, “Highly efficient generation of blue-orange femtosecond pulses from intracavity-frequency-mixed optical parametric oscillator,” Opt. Commun. 123, 121–128 (1996).
[CrossRef]

Sibbett, W.

Smith, P. G. R.

Stolz, W.

T. F. Albrecht, J. H. H. Sandmann, J. Feldmann, W. Stolz, E. O. Göbel, H. Hillmer, R. Lösch, and W. Schlapp, “Design and application of a femtosecond optical parametric oscillator for time-resolved spectroscopy of semiconductor heterostructures,” Appl. Phys. B 60, 459–467 (1995).
[CrossRef]

Szipöcs, R.

Tang, C. L.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscil-lator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

R. J. Ellingson and C. L. Tang, “High-power, high-repetition-rate femtosecond pulses tunable in the visible,” Opt. Lett. 18, 438–440 (1993).
[CrossRef] [PubMed]

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Wachman, E. S.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Wallenstein, R.

Zhang, X. P.

Zhu, S.

Y. Qin, Y. Zhu, S. Zhu, and N. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
[CrossRef]

Zhu, Y.

Y. Qin, Y. Zhu, S. Zhu, and N. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
[CrossRef]

Appl. Phys. B (1)

T. F. Albrecht, J. H. H. Sandmann, J. Feldmann, W. Stolz, E. O. Göbel, H. Hillmer, R. Lösch, and W. Schlapp, “Design and application of a femtosecond optical parametric oscillator for time-resolved spectroscopy of semiconductor heterostructures,” Appl. Phys. B 60, 459–467 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscil-lator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Appl. Phys. (1)

Y. Qin, Y. Zhu, S. Zhu, and N. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
[CrossRef]

J. Opt. Soc. Am. B (6)

Opt. Commun. (4)

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator,” Opt. Commun. 104, 419–430 (1993).
[CrossRef]

J. Hebling, H. Giessen, S. Linden, and J. Kuhl, “Mirror-dispersion-compensated femtosecond optical parametric oscillator,” Opt. Commun. 141, 229–236 (1997).
[CrossRef]

A. Shirakawa, H. W. Mao, and T. Kobayashi, “Highly efficient generation of blue-orange femtosecond pulses from intracavity-frequency-mixed optical parametric oscillator,” Opt. Commun. 123, 121–128 (1996).
[CrossRef]

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638–644 (1994).
[CrossRef]

Opt. Lett. (8)

Other (2)

www.ntandc.de.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental setup: M1, M3 chirped mirrors; M2 (R=98%99%), M4 (R=99.9%) high reflectors; C1, C2, curved mirrors with 100-mm radius of curvature; CL, collimating lens; SP, 45° BK7 prism.

Fig. 2
Fig. 2

Tuning characteristics of (a) SFG between the signal and the pump and (b) SHG of the signal. Inset: output power versus wavelength.

Fig. 3
Fig. 3

Transverse modes of the visible beams. 1, SHG of the signal in the red; 2, SHG of the signal in the yellow; 3, SHG of the signal in the green.

Fig. 4
Fig. 4

Calculated conversion efficiencies of the seventh through ninth orders of the QPM SHG process versus duty cycle.

Fig. 5
Fig. 5

Mechanisms of the fourth- and second-order QPMs with a 56.25% duty cycle, where lc1=Lc/4 and lc2=Lc/2 are the coherence lengths for the fourth-order QPM SFG and second-order QPM SHG processes, respectively, Lc is the coherence length of the OPO process, and Λ=2Lc is the practical grating period. The horizontal lines across the curves correspond to no net gain regions.

Fig. 6
Fig. 6

Calculated conversion efficiencies of the first through fourth orders of QPM versus poling duty cycle.

Fig. 7
Fig. 7

Interferometric autocorrelation measurement of the signal pulses (solid curve) and theoretical simulation (dashed curve) with 65-fs Gaussian pulses. Inset: corresponding spectrum.

Fig. 8
Fig. 8

Intensity autocorrelation measurement (filled squares) of the visible pulses at (a) 486 nm and (b) 617 nm. The solid curves are Gaussian fits to the experimental data, τAC denotes the autocorrelation width, and τp denotes the corresponding pulse duration.

Fig. 9
Fig. 9

Phase-matching bandwidth of a 0.5-mm PPLN with a grating period of 21 µm and at 100 °C, where L is the crystal length, Δk is the phase mismatch between the signal and the pump, and the dashed curves show the correspondence between a 100-nm signal bandwidth and a 8.5-nm pump bandwidth at perfect phase matching.

Fig. 10
Fig. 10

Pump-spectrum depletion effect: (a) Depletion hole and depletion spectrum. (b) Shift of the depletion hole (filled upward triangles) in dependence on the OPO cavity length change (ΔLOPO).

Fig. 11
Fig. 11

Conversion efficiency (the ratio between the signal power and the pump power) of the PPLN (Λ=21 µm) OPO versus pump bandwidth centered at 795 nm with 500-mW pump power.

Fig. 12
Fig. 12

Power characteristics of (a) the pump (P), (b) the signal (S), and (c) the SHG of the signal and SFG between the signal and the pump versus cavity-length detuning (ΔLOPO).

Fig. 13
Fig. 13

Cavity-length detuning effects with intracavity GDD compensated by chirped mirrors: (a) GDD of the chirped mirrors (dash-dotted curve) and 0.5-mm PPLN (dashed curve), and relative group delay (GD, solid curve) versus wavelength. (b) Comparison of tuning of the signal wavelength (λs) versus cavity-length change (ΔLOPO) between theory (solid curve) and measurement (open squares).

Fig. 14
Fig. 14

Broadened and structured signal spectra resulting from self-phase modulation effects when tuning the cavity length.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Λ3·ΛSHG,G
Λ2·ΛSHG,R,
Λ4·ΛSFG,B,
Λ3·ΛSHG+I
GDDOPO=GDDCM+GDDPPLN.
GDD=dτdω=-λ22πc·dτdλ,
Δτ=ΔLOPOc.
ΔLOPO=-cλ0λ1dτdλdλ=2πc2λ0λ1GDDOPOλ2dλ.

Metrics