Abstract

We have studied theoretically the inherent mechanisms of nonvolatile holographic storage in doubly doped LiNbO3 crystals. The photochromic effect of doubly doped LiNbO3 crystals is discussed, and the criterion for this effect is obtained through the photochromism–bleach factor a=S21γ1/S11γ2 that we define. The two-center recording and fixing processes are analytically discussed with extended Kukhtarev equations, and analytical expressions for recorded and fixed steady-state space-charge fields as well as temporal behavior during the fixing process are obtained. The effects of microphysical quantities, the macrophotochromic effect on fixing efficiency, and recorded and fixed steady-state space-charge fields, are discussed analytically and numerically.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  2. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
    [CrossRef]
  3. J. J. Amodei and D. L. Steabler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  4. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 78–81 (1972).
    [CrossRef]
  5. K. Buse, A. Adibi, and D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  6. K. Buse, A. Adibi, and D. Psaltis, “A novel method for persistent holographic recording in doubly doped lithium niobate,” in Holographic Materials V, T. J. Trout, ed., Proc. SPIE 3638, 15–21 (1999).
    [CrossRef]
  7. D. L. Staebler and W. Phillips, “Holographic storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
    [CrossRef]
  8. A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–655 (1999).
    [CrossRef]
  9. C. Moser, B. Schupp, and D. Psaltis, “Localized holographic recording in doubly doped lithium niobate,” Opt. Lett. 25, 162–164 (2000).
    [CrossRef]
  10. C. Moser, I. Maravic, B. Schupp, A. Adibi, and D. Psaltis, “Diffraction efficiency of localized holograms in doubly doped LiNbO3 crystals,” Opt. Lett. 25, 1243–1245 (2000).
    [CrossRef]
  11. Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic storage in photochromic doubly doped LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).
  12. Y. Liu, L. Liu, and C. Zhou, “Prescription for optimixing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
    [CrossRef]
  13. A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
    [CrossRef]
  14. D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
    [CrossRef]
  15. A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
    [CrossRef]
  16. Y. Liu, L. Liu, C. Zhou, and L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
    [CrossRef]
  17. Y. Liu, L. Liu, D. Liu, L. Xu, and C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
    [CrossRef]
  18. X. Yue, A. Adibi, T. Hudson, K. Buse, and D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
    [CrossRef]
  19. R. C. Duncan, Jr., B. W. Faughnan, and W. Phillips, “Photochromics and cathodochromics,” Appl. Opt. 9, 2236–2243 (1970).
    [PubMed]
  20. K. Buse, “Light-induced charge transport processes in photorefractive crystal. I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
    [CrossRef]
  21. A. M. Glass, D. Von der Linde, and T. J. Negran, “Height-voltage bulk photovolatic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
    [CrossRef]
  22. E. Kratzig and H. Kurz, “Spectroscopic investigation of photovolatic effects in doped LiNbO3,” J. Electrochem. Soc. Solid-State Sci. Technol. 124, 131–134 (1977).
    [CrossRef]

2001 (2)

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

Y. Liu, L. Liu, D. Liu, L. Xu, and C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

2000 (6)

1999 (4)

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic storage in photochromic doubly doped LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

K. Buse, A. Adibi, and D. Psaltis, “A novel method for persistent holographic recording in doubly doped lithium niobate,” in Holographic Materials V, T. J. Trout, ed., Proc. SPIE 3638, 15–21 (1999).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–655 (1999).
[CrossRef]

1998 (1)

K. Buse, A. Adibi, and D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

1997 (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystal. I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

1995 (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1977 (1)

E. Kratzig and H. Kurz, “Spectroscopic investigation of photovolatic effects in doped LiNbO3,” J. Electrochem. Soc. Solid-State Sci. Technol. 124, 131–134 (1977).
[CrossRef]

1974 (2)

A. M. Glass, D. Von der Linde, and T. J. Negran, “Height-voltage bulk photovolatic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

D. L. Staebler and W. Phillips, “Holographic storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

1972 (1)

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 78–81 (1972).
[CrossRef]

1971 (1)

J. J. Amodei and D. L. Steabler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

1970 (1)

Adibi, A.

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, and D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

C. Moser, I. Maravic, B. Schupp, A. Adibi, and D. Psaltis, “Diffraction efficiency of localized holograms in doubly doped LiNbO3 crystals,” Opt. Lett. 25, 1243–1245 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–655 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “A novel method for persistent holographic recording in doubly doped lithium niobate,” in Holographic Materials V, T. J. Trout, ed., Proc. SPIE 3638, 15–21 (1999).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Amodei, J. J.

J. J. Amodei and D. L. Steabler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Bismuth, G.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 78–81 (1972).
[CrossRef]

Buse, K.

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, and D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “A novel method for persistent holographic recording in doubly doped lithium niobate,” in Holographic Materials V, T. J. Trout, ed., Proc. SPIE 3638, 15–21 (1999).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–655 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystal. I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

Duncan Jr., R. C.

Faughnan, B. W.

Glass, A. M.

A. M. Glass, D. Von der Linde, and T. J. Negran, “Height-voltage bulk photovolatic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Hudson, T.

X. Yue, A. Adibi, T. Hudson, K. Buse, and D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Kratzig, E.

E. Kratzig and H. Kurz, “Spectroscopic investigation of photovolatic effects in doped LiNbO3,” J. Electrochem. Soc. Solid-State Sci. Technol. 124, 131–134 (1977).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Kurz, H.

E. Kratzig and H. Kurz, “Spectroscopic investigation of photovolatic effects in doped LiNbO3,” J. Electrochem. Soc. Solid-State Sci. Technol. 124, 131–134 (1977).
[CrossRef]

Liu, D.

Y. Liu, L. Liu, D. Liu, L. Xu, and C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Liu, L.

Y. Liu, L. Liu, D. Liu, L. Xu, and C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Y. Liu, L. Liu, and C. Zhou, “Prescription for optimixing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic storage in photochromic doubly doped LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Liu, Y.

Y. Liu, L. Liu, D. Liu, L. Xu, and C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Y. Liu, L. Liu, and C. Zhou, “Prescription for optimixing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic storage in photochromic doubly doped LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Maravic, I.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Micheron, F.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 78–81 (1972).
[CrossRef]

Mok, F.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Moser, C.

Negran, T. J.

A. M. Glass, D. Von der Linde, and T. J. Negran, “Height-voltage bulk photovolatic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Phillips, W.

D. L. Staebler and W. Phillips, “Holographic storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

R. C. Duncan, Jr., B. W. Faughnan, and W. Phillips, “Photochromics and cathodochromics,” Appl. Opt. 9, 2236–2243 (1970).
[PubMed]

Psaltis, D.

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, and D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

C. Moser, B. Schupp, and D. Psaltis, “Localized holographic recording in doubly doped lithium niobate,” Opt. Lett. 25, 162–164 (2000).
[CrossRef]

C. Moser, I. Maravic, B. Schupp, A. Adibi, and D. Psaltis, “Diffraction efficiency of localized holograms in doubly doped LiNbO3 crystals,” Opt. Lett. 25, 1243–1245 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–655 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “A novel method for persistent holographic recording in doubly doped lithium niobate,” in Holographic Materials V, T. J. Trout, ed., Proc. SPIE 3638, 15–21 (1999).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Schupp, B.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Staebler, D. L.

D. L. Staebler and W. Phillips, “Holographic storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

Steabler, D. L.

J. J. Amodei and D. L. Steabler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Von der Linde, D.

A. M. Glass, D. Von der Linde, and T. J. Negran, “Height-voltage bulk photovolatic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Xu, L.

Y. Liu, L. Liu, D. Liu, L. Xu, and C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic storage in photochromic doubly doped LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Yue, X.

X. Yue, A. Adibi, T. Hudson, K. Buse, and D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Zhou, C.

Y. Liu, L. Liu, D. Liu, L. Xu, and C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Y. Liu, L. Liu, and C. Zhou, “Prescription for optimixing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic storage in photochromic doubly doped LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Acta Opt. Sin. (1)

Y. Liu, L. Liu, C. Zhou, and L. Xu, “Photorefractive holographic storage in photochromic doubly doped LiNbO3:Fe:Mn crystals,” Acta Opt. Sin. 19, 1437–1438 (1999).

Appl. Opt. (1)

Appl. Phys. B (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystal. I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

Appl. Phys. Lett. (6)

A. M. Glass, D. Von der Linde, and T. J. Negran, “Height-voltage bulk photovolatic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, and L. Xu, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

J. J. Amodei and D. L. Steabler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 78–81 (1972).
[CrossRef]

D. L. Staebler and W. Phillips, “Holographic storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

J. Appl. Phys. (1)

X. Yue, A. Adibi, T. Hudson, K. Buse, and D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

J. Electrochem. Soc. Solid-State Sci. Technol. (1)

E. Kratzig and H. Kurz, “Spectroscopic investigation of photovolatic effects in doped LiNbO3,” J. Electrochem. Soc. Solid-State Sci. Technol. 124, 131–134 (1977).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

K. Buse, A. Adibi, and D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Opt. Commun. (1)

Y. Liu, L. Liu, D. Liu, L. Xu, and C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (1)

K. Buse, A. Adibi, and D. Psaltis, “A novel method for persistent holographic recording in doubly doped lithium niobate,” in Holographic Materials V, T. J. Trout, ed., Proc. SPIE 3638, 15–21 (1999).
[CrossRef]

Sci. Am. (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Electron exchange model between two centers in a LiNbO3:Fe:Mn crystal. CB, conduction band; VB, valence band.

Fig. 2
Fig. 2

Illustration of the criterion of the photochromic effect.

Fig. 3
Fig. 3

Band diagram of a two-center holographic recording model in a doubly doped LiNbO3:Fe:Mn crystal. CB, conduction band; VB, valence band.

Fig. 4
Fig. 4

Dependence of recorded steady-state space-charge field Escr on the two factors a and b and on oxidation–reduction state x.

Fig. 5
Fig. 5

Dependence of recorded steady-state space-charge field Escr on the recombination coefficient γ2, where b=5 and a=5 at γ2=1×10-15 m3 s-1.

Fig. 6
Fig. 6

Dependence of the fixing efficiency and of fixed steady-state space-charge field Escf on oxidation–reduction state x for various values of S11 and γ1. (a), (b), (c) Constant S11=25S21 and γ1=0.2, 1, 5γ2, respectively. (c), (d), (e) Constant γ1=5γ2 and S11=25, 5, 1S21, respectively. The values of factor a are (a) 0.008, (b) 0.04, (c) 0.2, (d) 1, and (e) 5. Solid, dashed dotted, and dashed–dotted curves, I20/I10=1/3, 10/3, 100/3, 100, respectively.

Fig. 7
Fig. 7

Dependence of (a) fixing efficiency and (b) fixed steady-state space-charge field Escf on recombination coefficient γ2 with several values of γ1, where S11=25S21 and x=0.95.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

dN1+dt=(N1-N1+)S11I1-γ1N1+n,
dN2+dt=(N2-N2+)S21I1-γ2N2+n,
dndt=(N1-N1+)S11I1+(N2-N2+)S21I1-γ1N1+n-γ2N2+n,
dN2+dtt=0=-dN1+dtt=0<0,
S21γ1S11γ2<>N1-N1+(0)N1+(0)N2-N2+N2+(0),photochromiceffectbleachingeffect,
a=a2a1,a2=S21I1nγ1,a1=S11I1nγ2.
dN1+dt=(N1-N1+)S11I1-γ1N1+n,
dN2+dt=(N2-N2+)(S21I1+S22I2)-γ2N2+n,
·j+ρt=0,
j=μkBTn+eμnE+jph,
ρ=e(N1++N2+-Na-n),
·(E)=ρ,
jph=κ21S21hν1(N2-N2+)I1+κ22S22hν2(N2-N2+)I2,
dN10+dt=(N1-N10+)g1-γ1n0N10+,
dN20+dt=(N2-N20+)g2-γ2n0N20+,
n0=(N1-N10+)g1+(N2-N20+)g2γ1N10++γ2N20+
dN11+dt=-N11+g1-γ1(N10+n1+N11+n0),
dN21+dt=(N2-N20+)mS22I20-N21+g2-γ2(N20+n1+N21+n0),
n1=N11+(g1+γ1n0)+N21+(g2+γ2n0)-eμn0(N11++N21+)-ikS22I20κ22ehν2[m(N2-N20+)-N21+]+ikS21I10κ21ehν1N21+-mS22I20(N2-N20+)-γ1N10+-γ2N20+-Dk2+ikμE0,
Esc=-iek(N11++N21+).
N10+=12(A-1)(Na-N2)A-(N1+Na)+[(N2-Na)A+(N1-Na)]2+4Na(N1+N2-Na)A1/2,
N20+=12(A-1)(N2+Na)A+(N1-Na)-[(N2-Na)A+(N1-Na)]2+4Na(N1+N2-Na)A1/2,
N11+=-mB2Eq2k/ei(B1Eq2-Eq1)E22ph+(ED-iE0)[Eq1-iB1(C21E21ph+C22E22ph-E22ph)](ED-iE0)[ED+Eq1+Eq2-i(E0+C21E21ph+C22E22ph)]+i(B1Eq2-Eq1)(C21E21ph+C22E22ph),
N21+=mB2Eq2k/ei(B1Eq2-Eq1)E22ph+(ED-iE0)[ED+Eq1-i(E0+E22ph)](ED-iE0)[ED+Eq1+Eq2-i(E0+C21E21ph+C22E22ph)]+i(B1Eq2-Eq1)(C21E21ph+C22E22ph),
A=a(1+b),B1=a(1+b)N10+2N2N20+2N1, B2=bb+1,
C21=1b+1N20+N2,C22=bb+1N20+N2,
a=S21γ1S11γ2,b=S22I20S21I10.
ED=kBTek,E21ph=γ2κ21N20+eμhν1, E22ph=γ2κ22N20+eμhν2,
Eq1=ekN10+1-N10+N1, Eq2=ekN20+1-N20+N2.
Escr=Esc1r+Esc2r=-iek(N11++N21+)=-imB2Eq2(ED-iE0)ED-i[E0-B1C21E21ph+(1+B1-B1C22)E22ph](ED-iE0)[ED+Eq1+Eq2-i(E0+C21E21ph+C22E22ph)]+i(B1Eq2-Eq1)(C21E21ph+C22E22ph).
N20+=Na,n0=S22I20γ2N2-NaNa,
N11+(t)=N11+(0)exp(-h1t),
N21+(t)=M1 exp(-h1t)+[N21+(0)-M1]exp(-h2t),
h1=γ1(N2-Na)γ2NaS22I20,
h2=μkBTk2N2/eNa+eμ(N2-Na)/-ikγ2Naκ22hν2/eγ2Na+μkBTk2/eS22I20,
M1=(γ1-eμ/)(N2-Na)-(γ1-eμ/)(N2-Na)+μkBTk2/e-ikγ2Naκ22hγ2/eN11+(0).
Escf=0
N11+(t)=N11+(0)+M2[1-exp(-h3t)],
N21+(t)=N21+(0)exp(-h3t),
h3=γ1(Na-N2)+μkBTk2/e-ikγ2N2κ22hν2/eγ1(Na-N2)+μkBTk2/e+γ2N2×S22I20,
M2=γ1(Na-N2)(1+ikκ22hν2/e)γ1(Na-N2)+μkBTk2/e-ikγ2N2κ22hν2/e×N21+(0).
Escf=Esc1r+γ1(Na-N2)(1+ikκ22hν2/e)γ1(Na-N2)+μkBTk2/e-ikγ2N2κ22hν2/e×Esc2r,Na>N2.

Metrics