Abstract

Smoothing, caused by the small-spatial-scale B integral, was measured on the OMEGA laser (a high-power, solid-state laser used for inertial confinement fusion research) without applied bandwidth. The intrinsic nonuniformity of laser irradiation [i.e., irradiation without smoothing by spectral dispersion] was determined from fluence distributions in equivalent-target-plane images of beams with phase plates. These data are compared with simulations that include both small-spatial-scale and whole-beam B integrals. The nonuniformity decreases with increasing average intensity. High-intensity beams can acquire bandwidth as a result of the intensity-dependent phase accumulated in the laser chain. The far-field speckle pattern produced by a phase plate can shift as the near-field phase front changes, which decreases the nonuniformity. The far-field power spectrum is affected mainly in the high spatial frequencies, where it is not expected to mitigate hydrodynamic instabilities.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Verdon, “High-performance direct-drive capsule designs for the National Ignition Facility,” Bull. Am. Phys. Soc. 38, 2010 (1993).
  2. S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
    [CrossRef]
  3. D. K. Bradley, J. A. Delettrez, and C. P. Verdon, “Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,” Phys. Rev. Lett. 68, 2774–2777 (1992).
    [CrossRef] [PubMed]
  4. J. Delettrez, D. K. Bradley, and C. P. Verdon, “The role of the Rayleigh–Taylor instability in laser-driven burnthrough experiments,” Phys. Plasmas 1, 2342–2349 (1994).
    [CrossRef]
  5. J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
    [CrossRef]
  6. R. Epstein, “Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,” J. Appl. Phys. 82, 2123–2139 (1997).
    [CrossRef]
  7. V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
    [CrossRef]
  8. F. J. Marshall and G. R. Bennett, “A high-energy x-ray microscope for inertial confinement fusion,” Rev. Sci. Instrum. 70, 617–619 (1999).
    [CrossRef]
  9. F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, “Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,” Phys. Plasmas 7, 1006–1013 (2000).
    [CrossRef]
  10. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
    [CrossRef]
  11. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
    [CrossRef]
  12. Laboratory for Laser Energetics, “Two-dimensional SSD on OMEGA,” LLE Review 69, pp. 1–10; NTIS Doc DOE/SF/19460–152(1996) (National Technical Information Service, Springfield, Va.).
  13. S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
    [CrossRef]
  14. J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14, 1664–1671 (1997).
    [CrossRef]
  15. T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Phase conversion of lasers with low-loss distributed phase plates,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 95–104 (1993).
  16. Y. Lin, T. J. Kessler, and G. N. Lawrence, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,” Opt. Lett. 21, 1703–1705 (1996).
    [CrossRef] [PubMed]
  17. Y. Kato, Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan (personal communication, 1984).
  18. K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
    [CrossRef]
  19. K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
    [CrossRef]
  20. Laboratory for Laser Energetics, “Phase conversion using distributed polarization rotation,” LLE Review 45, pp. 1–12; NTIS Doc. DOE/DP40200–149(1990) (National Technical Information Service, Springfield, Va.).
  21. T. E. Gunderman, J.-C. Lee, T. J. Kessler, S. D. Jacobs, D. J. Smith, and S. Skupsky, “Liquid crystal distributed polarization rotator for improved uniformity of focused laser light,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 354.
  22. S. P. Regan, J. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, “Experimental investigation of smoothing by spectral dispersion,” J. Opt. Soc. Am. B 17, 1483–1489 (2000).
    [CrossRef]
  23. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  24. D. C. Brown, “Glass laser physics,” in High-Peak-Power Nd: Glass Laser Systems, D. L. MacAdam, ed., Vol. 25 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1981).
  25. Inspired by Anishinaabe words waasikwa’ and waasikwa’an, meaning “polishes someone” and “polishes something” (respectively), as in smoothing a rough surface. See J. D. Nichols and E. Nyholm, A Concise Dictionary ofMinnesota Ojibwe (U. Minnesota Press, Minneapolis, Minn., 1995).
  26. D. Cortesi, “Topics in IRIX® Programming,” Doc. Number 007–2478–007 (Silicon Graphics, Mountain View, Calif., 1999).
  27. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  28. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd Rev. ed., McGraw-Hill Series in Electrical Engineering. Circuits and Systems (McGraw-Hill, New York, 1986).
  29. J. G. Proakis and D. G. Manolakis, Introduction to Digital Signal Processing (Macmillan, New York, 1988).
  30. J. A. Marozas, “Angular spectrum representation of pulsed laser beams with two-dimensional smoothing by spectral dispersion,” LLE Review 78, pp. 62–81; NTIS doc. DOE/SF/19460–295(1999) (National Technical Information Service, Springfield, Va).
  31. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, McGraw-Hill Electrical and Electronic Engineering Series (McGraw-Hill, New York, 1968), p. 154.

2000 (2)

F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, “Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,” Phys. Plasmas 7, 1006–1013 (2000).
[CrossRef]

S. P. Regan, J. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, “Experimental investigation of smoothing by spectral dispersion,” J. Opt. Soc. Am. B 17, 1483–1489 (2000).
[CrossRef]

1999 (2)

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

F. J. Marshall and G. R. Bennett, “A high-energy x-ray microscope for inertial confinement fusion,” Rev. Sci. Instrum. 70, 617–619 (1999).
[CrossRef]

1998 (2)

V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
[CrossRef]

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

1997 (3)

R. Epstein, “Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,” J. Appl. Phys. 82, 2123–2139 (1997).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14, 1664–1671 (1997).
[CrossRef]

1996 (1)

1994 (2)

J. Delettrez, D. K. Bradley, and C. P. Verdon, “The role of the Rayleigh–Taylor instability in laser-driven burnthrough experiments,” Phys. Plasmas 1, 2342–2349 (1994).
[CrossRef]

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

1993 (2)

C. P. Verdon, “High-performance direct-drive capsule designs for the National Ignition Facility,” Bull. Am. Phys. Soc. 38, 2010 (1993).

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

1992 (2)

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

D. K. Bradley, J. A. Delettrez, and C. P. Verdon, “Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,” Phys. Rev. Lett. 68, 2774–2777 (1992).
[CrossRef] [PubMed]

1989 (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Afeyan, B. B.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Bennett, G. R.

F. J. Marshall and G. R. Bennett, “A high-energy x-ray microscope for inertial confinement fusion,” Rev. Sci. Instrum. 70, 617–619 (1999).
[CrossRef]

Bodner, S. E.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Boehly, T. R.

S. P. Regan, J. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, “Experimental investigation of smoothing by spectral dispersion,” J. Opt. Soc. Am. B 17, 1483–1489 (2000).
[CrossRef]

V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Bradley, D. K.

V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
[CrossRef]

J. Delettrez, D. K. Bradley, and C. P. Verdon, “The role of the Rayleigh–Taylor instability in laser-driven burnthrough experiments,” Phys. Plasmas 1, 2342–2349 (1994).
[CrossRef]

D. K. Bradley, J. A. Delettrez, and C. P. Verdon, “Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,” Phys. Rev. Lett. 68, 2774–2777 (1992).
[CrossRef] [PubMed]

Brown, D. L.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Cable, M.

F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, “Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,” Phys. Plasmas 7, 1006–1013 (2000).
[CrossRef]

Colombant, D. G.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Craxton, R. S.

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Delettrez, J.

J. Delettrez, D. K. Bradley, and C. P. Verdon, “The role of the Rayleigh–Taylor instability in laser-driven burnthrough experiments,” Phys. Plasmas 1, 2342–2349 (1994).
[CrossRef]

Delettrez, J. A.

F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, “Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,” Phys. Plasmas 7, 1006–1013 (2000).
[CrossRef]

V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
[CrossRef]

D. K. Bradley, J. A. Delettrez, and C. P. Verdon, “Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,” Phys. Rev. Lett. 68, 2774–2777 (1992).
[CrossRef] [PubMed]

Donaldson, W. R.

Epstein, R.

R. Epstein, “Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,” J. Appl. Phys. 82, 2123–2139 (1997).
[CrossRef]

Gardner, J. H.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Glebov, V. Yu.

F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, “Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,” Phys. Plasmas 7, 1006–1013 (2000).
[CrossRef]

Glendinning, S. G.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Goncharov, V. N.

V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
[CrossRef]

Haan, S. W.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Hammel, B. A.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Jaanimagi, P. A.

Jitsuno, T.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Kanabe, T.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Keck, R. L.

S. P. Regan, J. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, “Experimental investigation of smoothing by spectral dispersion,” J. Opt. Soc. Am. B 17, 1483–1489 (2000).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Kelly, J. H.

S. P. Regan, J. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, “Experimental investigation of smoothing by spectral dispersion,” J. Opt. Soc. Am. B 17, 1483–1489 (2000).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Kessler, T. J.

Kilkenny, J. D.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Knauer, J. P.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Kremens, R. L.

F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, “Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,” Phys. Plasmas 7, 1006–1013 (2000).
[CrossRef]

Kumpan, S. A.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Lawrence, G. N.

Lehmberg, R. H.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Letzring, S. A.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Lin, Y.

Lindl, J. D.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Loucks, S. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Marozas, J.

Marshall, F. J.

F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, “Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,” Phys. Plasmas 7, 1006–1013 (2000).
[CrossRef]

F. J. Marshall and G. R. Bennett, “A high-energy x-ray microscope for inertial confinement fusion,” Rev. Sci. Instrum. 70, 617–619 (1999).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

McCrory, R. L.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Meyerhofer, D. D.

S. P. Regan, J. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, “Experimental investigation of smoothing by spectral dispersion,” J. Opt. Soc. Am. B 17, 1483–1489 (2000).
[CrossRef]

V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
[CrossRef]

Miyanaga, N.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

Morse, S. F. B.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Munro, D.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Nakai, S.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Nakano, H.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Nakatsuka, M.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Obenschain, S. P.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Oron, D.

V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
[CrossRef]

Phillips, L.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Powell, H. T.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Regan, S. P.

Remington, B. A.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Rothenberg, J. E.

Schmitt, A. J.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Seka, W.

S. P. Regan, J. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, “Experimental investigation of smoothing by spectral dispersion,” J. Opt. Soc. Am. B 17, 1483–1489 (2000).
[CrossRef]

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Sethian, J. D.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Shvarts, D.

V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
[CrossRef]

Skupsky, S.

S. P. Regan, J. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, “Experimental investigation of smoothing by spectral dispersion,” J. Opt. Soc. Am. B 17, 1483–1489 (2000).
[CrossRef]

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Smalyuk, V. A.

S. P. Regan, J. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, “Experimental investigation of smoothing by spectral dispersion,” J. Opt. Soc. Am. B 17, 1483–1489 (2000).
[CrossRef]

V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
[CrossRef]

Soures, J. M.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Town, R. P. J.

F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, “Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,” Phys. Plasmas 7, 1006–1013 (2000).
[CrossRef]

Tsubakimoto, K.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Verdon, C. P.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

J. Delettrez, D. K. Bradley, and C. P. Verdon, “The role of the Rayleigh–Taylor instability in laser-driven burnthrough experiments,” Phys. Plasmas 1, 2342–2349 (1994).
[CrossRef]

C. P. Verdon, “High-performance direct-drive capsule designs for the National Ignition Facility,” Bull. Am. Phys. Soc. 38, 2010 (1993).

D. K. Bradley, J. A. Delettrez, and C. P. Verdon, “Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,” Phys. Rev. Lett. 68, 2774–2777 (1992).
[CrossRef] [PubMed]

Weber, S. V.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Yaakobi, B.

F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, “Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,” Phys. Plasmas 7, 1006–1013 (2000).
[CrossRef]

Bull. Am. Phys. Soc. (1)

C. P. Verdon, “High-performance direct-drive capsule designs for the National Ignition Facility,” Bull. Am. Phys. Soc. 38, 2010 (1993).

J. Appl. Phys. (2)

R. Epstein, “Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,” J. Appl. Phys. 82, 2123–2139 (1997).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Opt. Lett. (1)

Phys. Plasmas (5)

F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, “Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,” Phys. Plasmas 7, 1006–1013 (2000).
[CrossRef]

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

J. Delettrez, D. K. Bradley, and C. P. Verdon, “The role of the Rayleigh–Taylor instability in laser-driven burnthrough experiments,” Phys. Plasmas 1, 2342–2349 (1994).
[CrossRef]

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

D. K. Bradley, J. A. Delettrez, and C. P. Verdon, “Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,” Phys. Rev. Lett. 68, 2774–2777 (1992).
[CrossRef] [PubMed]

V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

F. J. Marshall and G. R. Bennett, “A high-energy x-ray microscope for inertial confinement fusion,” Rev. Sci. Instrum. 70, 617–619 (1999).
[CrossRef]

Other (14)

E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

D. C. Brown, “Glass laser physics,” in High-Peak-Power Nd: Glass Laser Systems, D. L. MacAdam, ed., Vol. 25 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1981).

Inspired by Anishinaabe words waasikwa’ and waasikwa’an, meaning “polishes someone” and “polishes something” (respectively), as in smoothing a rough surface. See J. D. Nichols and E. Nyholm, A Concise Dictionary ofMinnesota Ojibwe (U. Minnesota Press, Minneapolis, Minn., 1995).

D. Cortesi, “Topics in IRIX® Programming,” Doc. Number 007–2478–007 (Silicon Graphics, Mountain View, Calif., 1999).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

R. N. Bracewell, The Fourier Transform and Its Applications, 2nd Rev. ed., McGraw-Hill Series in Electrical Engineering. Circuits and Systems (McGraw-Hill, New York, 1986).

J. G. Proakis and D. G. Manolakis, Introduction to Digital Signal Processing (Macmillan, New York, 1988).

J. A. Marozas, “Angular spectrum representation of pulsed laser beams with two-dimensional smoothing by spectral dispersion,” LLE Review 78, pp. 62–81; NTIS doc. DOE/SF/19460–295(1999) (National Technical Information Service, Springfield, Va).

B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, McGraw-Hill Electrical and Electronic Engineering Series (McGraw-Hill, New York, 1968), p. 154.

Y. Kato, Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan (personal communication, 1984).

Laboratory for Laser Energetics, “Two-dimensional SSD on OMEGA,” LLE Review 69, pp. 1–10; NTIS Doc DOE/SF/19460–152(1996) (National Technical Information Service, Springfield, Va.).

Laboratory for Laser Energetics, “Phase conversion using distributed polarization rotation,” LLE Review 45, pp. 1–12; NTIS Doc. DOE/DP40200–149(1990) (National Technical Information Service, Springfield, Va.).

T. E. Gunderman, J.-C. Lee, T. J. Kessler, S. D. Jacobs, D. J. Smith, and S. Skupsky, “Liquid crystal distributed polarization rotator for improved uniformity of focused laser light,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 354.

T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Phase conversion of lasers with low-loss distributed phase plates,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 95–104 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

UVETP sampled far-field spot, demonstrating the 46×, high-magnification setup. The image represents a 300-J, 3.5-ns square laser pulse without applied FM. As demonstrated with the single-pixel lineout through the center of the beam, the spot possesses a highly modulated intensity profile. The laser beam focus is centered nominally on the photodetector, and a 584-µm central portion of the whole 950-µm far-field spot (defined as the 95% enclosed energy contour) is captured on a 1024×1024 pixel grid.

Fig. 2
Fig. 2

Nonuniformity as a function of average intensity for low- and high-energy versions of the pulse shapes. The trend in nonuniformity of UVETP images is shown as a function of various pulse shapes and average intensities. Squares represent the high-energy shots, and circles correspond to the low-energy counterparts. The points are labeled with the OMEGA shot numbers. Note the suppressed zero.

Fig. 3
Fig. 3

1-D power spectrum of UVETP images for (a) low-energy, 3-ns square (shot 16217) and 100-ps Gaussian (shot 13736) shots and (b) low-energy, 3-ns square (shot 16217) and high-energy 1-ns square (shot 15723) shots. The low-energy shot was 5 J and represents the expected spectrum for shots without applied FM. The high-energy shots were 508 and 40 J, respectively, and illustrate the smoothing effects of whole-beam and small-spatial-scale B integrals in the regions indicated, where the spectral power has been reduced relative to the low-energy shot.

Fig. 4
Fig. 4

1-D power spectrum of a UVETP image of a 100-ps Gaussian pulse (shot 13736) and the corresponding Waasikwa’ simulation including only whole-beam B-integral effects and both small-spatial-scale and whole-beam B-integral effects.

Fig. 5
Fig. 5

1-D power spectrum of a UVETP image of a 1-ns square pulse (shot 15723) and the corresponding Waasikwa’ simulation including only whole-beam B-integral effects and both small-spatial-scale and whole-beam B-integral effects.

Fig. 6
Fig. 6

1-D power spectrum of a UVETP image of a 2-ns square pulse (shot 13479) and the corresponding Waasikwa’ simulation including only whole-beam B-integral effects and both small-spatial-scale and whole-beam B-integral effects.

Fig. 7
Fig. 7

1-D power spectrum of a UVETP image of a 3-ns square pulse (shot 13879) and the corresponding Waasikwa’ simulation including only whole-beam B-integral effects and both small-spatial-scale and whole-beam B-integral effects.

Fig. 8
Fig. 8

Calculated laser divergence that is due to the whole-beam B integral as a function of time for a 40-J, 100-ps Gaussian pulse.

Fig. 9
Fig. 9

Two near-field fluence measurements, taken after the frequency-conversion crystals, represent the early-and the late-time evolution of a long pulse. (a) The first image (shot 14233) is a 100-ps Gaussian pulse, representative of the early-time evolution. (b) The second image (shot 14234) is a 1-ns square pulse, representative of the late-time evolution.

Fig. 10
Fig. 10

Calculated laser divergence that is due to the whole-beam and small-spatial-scale B integrals as a function of time for a 1-ns square pulse at full system energy.

Tables (2)

Tables Icon

Table 1 Far-Field Analysis Results from Typical UVETP Images and Waasikwa’ Simulations That Match the Near-Field Conditions for a Variety of Pulse Shapes and Energiesa

Tables Icon

Table 2 Summary of Model Parameters for 1-, 2-, and 3-ns Square Pulsesa

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

Δφ=2π(n0-1)Lλ0+ϕB(z),
ϕB(z)=2πλ 0LγI(z)dz,
F(xff, yff)pulsedurIff(xff, yff, t)dt,
Iff(xff, yff, t)n0ε0c2(λUVfΩ)2 spaceE(x, y, t)×exp-i 2πλUVfΩ(xffx+yffy)dxdy2,
E(x, y, t)E0(x, y, t)exp{i[ϕB(x, y, t)+ϕDPP(x, y)]},
req1Fnf(0) 0Fnf(r)dr,
teq1P(tc) -P(t)dt,
Fnf(r)n0ε0c2 t|E0(r, t)|2dt,
P(t)2π0 n0ε0c2|E0(r, t)|2rdr,
tc=-tP(t)dt-P(t)dt.
PSD(kxff, kyff)farfieldF(xff, yff)×exp[-i(kxffxff+kyffyff)]dxffdyff2,
psd(kff)= PSD(kxff, kyff)kffdθ,
kffmax=2πDΩλUVfΩ=2.73 rad/µm,
Hamming(xff, yff)Hamming(xff)×Hamming(yff).
IavgUshotteqπreq2,
Δϕ(x, y, τ)x(ϕ/x)+y(ϕ/y),
ϕ(x, y, t)14π2 spatialfreq ϕ˜(kx, ky, t)×exp[+i(kxx+kyy)]dkxdky,
Iff(xff, yff, t)=1/2n0ε0c|EDPP(xff, yff, t) * Eϕ(xff, yff, t)|2,
ϕ(x, y, t)=2|ϕ˜(kx, ky, t)|sin{[ϕ˜(kx, ky, t)]+kxx+kyy},
Δθ2[|ϕ˜(kx, ky, t)|+1](kx2+ky2)1/2.
E(x, y, t)E0RB(x, y, t)exp[iϕBRB(x, y, t)].
kff=2πfΩΔθ=0.35 rad/µm,
Esim(x, y, t)E0sim(x, y, t)exp[iϕBsim(x, y, t)],
E0sim(x, y, t)E0RB(x, y, t)Γ(x, y),
ϕBsim(x, y, t)ϕBRB(x, y, t)Γ(x, y).
Γ(x, y)α FUVNF(x, y)FRB(x, y).
αWRBWUVNF,
b(τon, τoff, r, t)1/2{tanh[r(t-τon)]-tanh[r(t-τoff)]},
WUVNFn0τnnearfield IRB(x, y, t)dxdydt,
n=13 b(τonn, τoffn, r, t)=1;t.

Metrics