Abstract

Bulk second-order nonlinearity was generated in BK7 glass at a higher temperature and with a longer poling time than near-surface second-order nonlinearity. The temporal decay of the bulk second-order nonlinearity was slower than that of the near-surface second-order nonlinearity. The thickness of the near-surface nonlinear layer increased with poling time. Poled BK7 glass was also measured by x-ray photoelectron spectroscopy. Depletion of Na at the anodic surface and its accumulation at the cathodic surface was observed. At the cathodic surface, a higher-energy peak near O (1s) appeared, which shows peroxy-radical defects. At the anodic surface, a lower-energy peak near Si (2p) appeared, which may be attributed to E centers or to two-coordinated Si defects. The mechanisms of generation of these defects and of the second-order nonlinearities are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription