Abstract

Bulk second-order nonlinearity was generated in BK7 glass at a higher temperature and with a longer poling time than near-surface second-order nonlinearity. The temporal decay of the bulk second-order nonlinearity was slower than that of the near-surface second-order nonlinearity. The thickness of the near-surface nonlinear layer increased with poling time. Poled BK7 glass was also measured by x-ray photoelectron spectroscopy. Depletion of Na at the anodic surface and its accumulation at the cathodic surface was observed. At the cathodic surface, a higher-energy peak near O (1s) appeared, which shows peroxy-radical defects. At the anodic surface, a lower-energy peak near Si (2p) appeared, which may be attributed to E centers or to two-coordinated Si defects. The mechanisms of generation of these defects and of the second-order nonlinearities are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Chemla and J. Zyss, eds. Nonlinear Properties of Organic Molecules and Crystals (Academic, New York, 1987).
  2. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1737 (1991).
    [CrossRef] [PubMed]
  3. R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P.F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1994).
    [CrossRef]
  4. A. Le Calvez, E. Freysz, and A. Ducasse, “Experimental study of the origin of the second-order nonlinearities induced in thermally poled fused silica,” Opt. Lett. 22, 1547–1549 (1997).
    [CrossRef]
  5. V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, ’ Appl. Phys. Lett. 74, 2423–2425 (1999).
    [CrossRef]
  6. K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
    [CrossRef]
  7. M.-X. Qiu, T. Mizunami, H. Koya, F. Pi, and G. Orriols, “Large second-order susceptibility in poled ZF7 lead silica for sum-frequency generation,” in Proceedings of Nonlinear Optics ’98, catalog no. 98CH36244 (Institute of Electrical and Electronic Engineers, Piscataway, N.J., 1998), pp. 370–372.
  8. M.-X. Qiu, F. Pi, G. Orriols, and M. Bibiche, “Signal damping of second-harmonic generation in poled soda-lime silicate glasses,” J. Opt. Soc. Am. B 15, 1362–1365 (1998).
    [CrossRef]
  9. H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
    [CrossRef]
  10. L. J. Henry, A. D. DeVilbiss, and T. E. Tsai, “Effect of preannealing on the level of second-harmonic generation and defect sites achieved in poled low-water fused silica,” J. Opt. Soc. Am. B 12, 2037–2045 (1995).
    [CrossRef]
  11. Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. Niay, and M. Douay, “Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses,” Opt. Commun. 176, 479–487 (2000).
    [CrossRef]
  12. M.-X. Qiu, R. Vilaseca, M. Botey, J. Sellares, F. Pi, and G. Orriols, “Double fitting of Maker fringes to characterize near-surface and bulk second-order nonlinearities in poled silica,” Appl. Phys. Lett. 76, 3346–3348 (2000).
    [CrossRef]
  13. D. E. Carlson, “Ion depletion of glass at a blocking anode: I. Theory and experimental results for alkali silicate glasses,” J. Am. Ceram. Soc. 57, 291–294 (1974).
    [CrossRef]
  14. M.-X. Qiu, Y. Takagaki, S. Egawa, T. Mizunami, and R. Vilaseca, “Large second-order susceptibility generated in the cathodic face of silica by doping F anions,” Opt. Commun. 172, 97–101 (1999).
    [CrossRef]
  15. J. Kosikova and J. Schrofel, “Planar optical waveguides prepared in GIL49 and BK7 glass substrates by K+–Na+ ion exchange with the electric field assistance,” J. Electron. Mater. 28, 1088–1095 (1999).
    [CrossRef]
  16. V. Nazabal, E. Fargin, C. Labrugere, and G. Le Flem, “Second-harmonic generation optimization in thermally poled borophosphate glasses and characterization by XANES and XPS,” J. Non-Cryst. Solids 270, 223–233 (2000).
    [CrossRef]
  17. K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys. Condens. Matter 12, L513–L518 (2000).
    [CrossRef]
  18. M.-X. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of the second-order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
    [CrossRef]
  19. T. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers, and E. H. Adem, “An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference,” Surf. Interface Anal. 18, 59–64 (1992).
    [CrossRef]
  20. M.-X. Qiu, T. Mizunami, T. Shimomura, and M. Ohtaki, “Threshold conditions for bulk second-order nonlinearity and near-surface nonlinearity in thermally poled Infrasil silica,” Opt. Rev. 8, 159–162 (2001).
    [CrossRef]
  21. J. Khaled, T. Fujiwara, M. Ohama, and A. J. Ikushima, “Generation of second harmonic in Ge-doped SiO2 thin films by ultraviolet irradiation under poling electric field,” J. Appl. Phys. 87, 2137–2141 (2000).
    [CrossRef]
  22. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectroscopy of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
    [CrossRef]
  23. D. Sprenger, H. Bach, W. Meisel, and P. Gutlich, “Discrete bond model (DBM) of sodium silicate glasses derived from XPS, Raman, and NMR measurements,” J. Non-Cryst. Solids 159, 187–203 (1993).
    [CrossRef]
  24. D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
    [CrossRef]
  25. G. Pacchioni and M. Vitiello, “Infra-red electron paramagnetic resonance and x-ray photoemission spectral properties of point defects in silica from first-principle calculations,” J. Non-Cryst. Solids 245, 175–182 (1999).
    [CrossRef]
  26. V. S. Kortov, I. N. Shabanova, A. F. Zatsepin, S. F. Lomaeva, V. I. Ushakova, and V. Ya. Bayankin, “Radiation damage to the surface of oxide dielectrics irradiated by fast electrons,” Phys. Chem. Mech. Surf. 2, 529–539 (1984).

2001

M.-X. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of the second-order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[CrossRef]

M.-X. Qiu, T. Mizunami, T. Shimomura, and M. Ohtaki, “Threshold conditions for bulk second-order nonlinearity and near-surface nonlinearity in thermally poled Infrasil silica,” Opt. Rev. 8, 159–162 (2001).
[CrossRef]

2000

J. Khaled, T. Fujiwara, M. Ohama, and A. J. Ikushima, “Generation of second harmonic in Ge-doped SiO2 thin films by ultraviolet irradiation under poling electric field,” J. Appl. Phys. 87, 2137–2141 (2000).
[CrossRef]

V. Nazabal, E. Fargin, C. Labrugere, and G. Le Flem, “Second-harmonic generation optimization in thermally poled borophosphate glasses and characterization by XANES and XPS,” J. Non-Cryst. Solids 270, 223–233 (2000).
[CrossRef]

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys. Condens. Matter 12, L513–L518 (2000).
[CrossRef]

Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. Niay, and M. Douay, “Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses,” Opt. Commun. 176, 479–487 (2000).
[CrossRef]

M.-X. Qiu, R. Vilaseca, M. Botey, J. Sellares, F. Pi, and G. Orriols, “Double fitting of Maker fringes to characterize near-surface and bulk second-order nonlinearities in poled silica,” Appl. Phys. Lett. 76, 3346–3348 (2000).
[CrossRef]

1999

M.-X. Qiu, Y. Takagaki, S. Egawa, T. Mizunami, and R. Vilaseca, “Large second-order susceptibility generated in the cathodic face of silica by doping F anions,” Opt. Commun. 172, 97–101 (1999).
[CrossRef]

J. Kosikova and J. Schrofel, “Planar optical waveguides prepared in GIL49 and BK7 glass substrates by K+–Na+ ion exchange with the electric field assistance,” J. Electron. Mater. 28, 1088–1095 (1999).
[CrossRef]

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectroscopy of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[CrossRef]

G. Pacchioni and M. Vitiello, “Infra-red electron paramagnetic resonance and x-ray photoemission spectral properties of point defects in silica from first-principle calculations,” J. Non-Cryst. Solids 245, 175–182 (1999).
[CrossRef]

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, ’ Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

1998

1997

1995

1994

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P.F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1994).
[CrossRef]

1993

D. Sprenger, H. Bach, W. Meisel, and P. Gutlich, “Discrete bond model (DBM) of sodium silicate glasses derived from XPS, Raman, and NMR measurements,” J. Non-Cryst. Solids 159, 187–203 (1993).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

1992

T. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers, and E. H. Adem, “An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference,” Surf. Interface Anal. 18, 59–64 (1992).
[CrossRef]

1991

1984

V. S. Kortov, I. N. Shabanova, A. F. Zatsepin, S. F. Lomaeva, V. I. Ushakova, and V. Ya. Bayankin, “Radiation damage to the surface of oxide dielectrics irradiated by fast electrons,” Phys. Chem. Mech. Surf. 2, 529–539 (1984).

1974

D. E. Carlson, “Ion depletion of glass at a blocking anode: I. Theory and experimental results for alkali silicate glasses,” J. Am. Ceram. Soc. 57, 291–294 (1974).
[CrossRef]

Adem, E. H.

T. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers, and E. H. Adem, “An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference,” Surf. Interface Anal. 18, 59–64 (1992).
[CrossRef]

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectroscopy of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[CrossRef]

Bach, H.

D. Sprenger, H. Bach, W. Meisel, and P. Gutlich, “Discrete bond model (DBM) of sodium silicate glasses derived from XPS, Raman, and NMR measurements,” J. Non-Cryst. Solids 159, 187–203 (1993).
[CrossRef]

Bayankin, V. Ya.

V. S. Kortov, I. N. Shabanova, A. F. Zatsepin, S. F. Lomaeva, V. I. Ushakova, and V. Ya. Bayankin, “Radiation damage to the surface of oxide dielectrics irradiated by fast electrons,” Phys. Chem. Mech. Surf. 2, 529–539 (1984).

Bernage, P.

Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. Niay, and M. Douay, “Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses,” Opt. Commun. 176, 479–487 (2000).
[CrossRef]

Bibiche, M.

Bonfrate, G.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, ’ Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

Botey, M.

M.-X. Qiu, R. Vilaseca, M. Botey, J. Sellares, F. Pi, and G. Orriols, “Double fitting of Maker fringes to characterize near-surface and bulk second-order nonlinearities in poled silica,” Appl. Phys. Lett. 76, 3346–3348 (2000).
[CrossRef]

Brueck, S. R. J.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectroscopy of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1737 (1991).
[CrossRef] [PubMed]

Burger, A.

D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
[CrossRef]

Carlson, D. E.

D. E. Carlson, “Ion depletion of glass at a blocking anode: I. Theory and experimental results for alkali silicate glasses,” J. Am. Ceram. Soc. 57, 291–294 (1974).
[CrossRef]

Collins, W. E.

D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
[CrossRef]

DeVilbiss, A. D.

Douay, M.

Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. Niay, and M. Douay, “Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses,” Opt. Commun. 176, 479–487 (2000).
[CrossRef]

Ducasse, A.

Dutherage, P.

Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. Niay, and M. Douay, “Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses,” Opt. Commun. 176, 479–487 (2000).
[CrossRef]

Egawa, S.

M.-X. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of the second-order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[CrossRef]

M.-X. Qiu, Y. Takagaki, S. Egawa, T. Mizunami, and R. Vilaseca, “Large second-order susceptibility generated in the cathodic face of silica by doping F anions,” Opt. Commun. 172, 97–101 (1999).
[CrossRef]

Fargin, E.

V. Nazabal, E. Fargin, C. Labrugere, and G. Le Flem, “Second-harmonic generation optimization in thermally poled borophosphate glasses and characterization by XANES and XPS,” J. Non-Cryst. Solids 270, 223–233 (2000).
[CrossRef]

Freysz, E.

Fujiwara, T.

J. Khaled, T. Fujiwara, M. Ohama, and A. J. Ikushima, “Generation of second harmonic in Ge-doped SiO2 thin films by ultraviolet irradiation under poling electric field,” J. Appl. Phys. 87, 2137–2141 (2000).
[CrossRef]

George, M. A.

D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
[CrossRef]

Gross, T.

T. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers, and E. H. Adem, “An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference,” Surf. Interface Anal. 18, 59–64 (1992).
[CrossRef]

Gutlich, P.

D. Sprenger, H. Bach, W. Meisel, and P. Gutlich, “Discrete bond model (DBM) of sodium silicate glasses derived from XPS, Raman, and NMR measurements,” J. Non-Cryst. Solids 159, 187–203 (1993).
[CrossRef]

Henderson, D. O.

D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
[CrossRef]

Henry, L. J.

Hirao, K.

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys. Condens. Matter 12, L513–L518 (2000).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Horimoto, K.

M.-X. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of the second-order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[CrossRef]

Hosono, H.

Ikushima, A. J.

J. Khaled, T. Fujiwara, M. Ohama, and A. J. Ikushima, “Generation of second harmonic in Ge-doped SiO2 thin films by ultraviolet irradiation under poling electric field,” J. Appl. Phys. 87, 2137–2141 (2000).
[CrossRef]

Kamiya, K.

Kashima, K.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Kashyap, R.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P.F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1994).
[CrossRef]

Kazansky, P. G.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, ’ Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

Khaled, J.

J. Khaled, T. Fujiwara, M. Ohama, and A. J. Ikushima, “Generation of second harmonic in Ge-doped SiO2 thin films by ultraviolet irradiation under poling electric field,” J. Appl. Phys. 87, 2137–2141 (2000).
[CrossRef]

Kortov, V. S.

V. S. Kortov, I. N. Shabanova, A. F. Zatsepin, S. F. Lomaeva, V. I. Ushakova, and V. Ya. Bayankin, “Radiation damage to the surface of oxide dielectrics irradiated by fast electrons,” Phys. Chem. Mech. Surf. 2, 529–539 (1984).

Kosikova, J.

J. Kosikova and J. Schrofel, “Planar optical waveguides prepared in GIL49 and BK7 glass substrates by K+–Na+ ion exchange with the electric field assistance,” J. Electron. Mater. 28, 1088–1095 (1999).
[CrossRef]

Kurachi, K.

Labrugere, C.

V. Nazabal, E. Fargin, C. Labrugere, and G. Le Flem, “Second-harmonic generation optimization in thermally poled borophosphate glasses and characterization by XANES and XPS,” J. Non-Cryst. Solids 270, 223–233 (2000).
[CrossRef]

Le Calvez, A.

Le Flem, G.

V. Nazabal, E. Fargin, C. Labrugere, and G. Le Flem, “Second-harmonic generation optimization in thermally poled borophosphate glasses and characterization by XANES and XPS,” J. Non-Cryst. Solids 270, 223–233 (2000).
[CrossRef]

Lomaeva, S. F.

V. S. Kortov, I. N. Shabanova, A. F. Zatsepin, S. F. Lomaeva, V. I. Ushakova, and V. Ya. Bayankin, “Radiation damage to the surface of oxide dielectrics irradiated by fast electrons,” Phys. Chem. Mech. Surf. 2, 529–539 (1984).

Magruder III, R. H.

D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
[CrossRef]

Martinelli, G.

Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. Niay, and M. Douay, “Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses,” Opt. Commun. 176, 479–487 (2000).
[CrossRef]

Matsuoka, J.

Mckee, P.F.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P.F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1994).
[CrossRef]

Meisel, W.

D. Sprenger, H. Bach, W. Meisel, and P. Gutlich, “Discrete bond model (DBM) of sodium silicate glasses derived from XPS, Raman, and NMR measurements,” J. Non-Cryst. Solids 159, 187–203 (1993).
[CrossRef]

Mito, A.

Mizunami, T.

M.-X. Qiu, T. Mizunami, T. Shimomura, and M. Ohtaki, “Threshold conditions for bulk second-order nonlinearity and near-surface nonlinearity in thermally poled Infrasil silica,” Opt. Rev. 8, 159–162 (2001).
[CrossRef]

M.-X. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of the second-order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[CrossRef]

M.-X. Qiu, Y. Takagaki, S. Egawa, T. Mizunami, and R. Vilaseca, “Large second-order susceptibility generated in the cathodic face of silica by doping F anions,” Opt. Commun. 172, 97–101 (1999).
[CrossRef]

Morgan, S. H.

D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
[CrossRef]

Mu, R.

D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
[CrossRef]

Mukherjee, N.

Myers, R. A.

Narazaki, A.

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys. Condens. Matter 12, L513–L518 (2000).
[CrossRef]

Nasu, H.

Nazabal, V.

V. Nazabal, E. Fargin, C. Labrugere, and G. Le Flem, “Second-harmonic generation optimization in thermally poled borophosphate glasses and characterization by XANES and XPS,” J. Non-Cryst. Solids 270, 223–233 (2000).
[CrossRef]

Niay, P.

Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. Niay, and M. Douay, “Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses,” Opt. Commun. 176, 479–487 (2000).
[CrossRef]

Ohama, M.

J. Khaled, T. Fujiwara, M. Ohama, and A. J. Ikushima, “Generation of second harmonic in Ge-doped SiO2 thin films by ultraviolet irradiation under poling electric field,” J. Appl. Phys. 87, 2137–2141 (2000).
[CrossRef]

Ohtaki, M.

M.-X. Qiu, T. Mizunami, T. Shimomura, and M. Ohtaki, “Threshold conditions for bulk second-order nonlinearity and near-surface nonlinearity in thermally poled Infrasil silica,” Opt. Rev. 8, 159–162 (2001).
[CrossRef]

Okamoto, H.

Orriols, G.

M.-X. Qiu, R. Vilaseca, M. Botey, J. Sellares, F. Pi, and G. Orriols, “Double fitting of Maker fringes to characterize near-surface and bulk second-order nonlinearities in poled silica,” Appl. Phys. Lett. 76, 3346–3348 (2000).
[CrossRef]

M.-X. Qiu, F. Pi, G. Orriols, and M. Bibiche, “Signal damping of second-harmonic generation in poled soda-lime silicate glasses,” J. Opt. Soc. Am. B 15, 1362–1365 (1998).
[CrossRef]

Pacchioni, G.

G. Pacchioni and M. Vitiello, “Infra-red electron paramagnetic resonance and x-ray photoemission spectral properties of point defects in silica from first-principle calculations,” J. Non-Cryst. Solids 245, 175–182 (1999).
[CrossRef]

Pi, F.

M.-X. Qiu, R. Vilaseca, M. Botey, J. Sellares, F. Pi, and G. Orriols, “Double fitting of Maker fringes to characterize near-surface and bulk second-order nonlinearities in poled silica,” Appl. Phys. Lett. 76, 3346–3348 (2000).
[CrossRef]

M.-X. Qiu, F. Pi, G. Orriols, and M. Bibiche, “Signal damping of second-harmonic generation in poled soda-lime silicate glasses,” J. Opt. Soc. Am. B 15, 1362–1365 (1998).
[CrossRef]

Pruneri, V.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, ’ Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

Qiu, M.-X.

M.-X. Qiu, T. Mizunami, T. Shimomura, and M. Ohtaki, “Threshold conditions for bulk second-order nonlinearity and near-surface nonlinearity in thermally poled Infrasil silica,” Opt. Rev. 8, 159–162 (2001).
[CrossRef]

M.-X. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of the second-order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[CrossRef]

M.-X. Qiu, R. Vilaseca, M. Botey, J. Sellares, F. Pi, and G. Orriols, “Double fitting of Maker fringes to characterize near-surface and bulk second-order nonlinearities in poled silica,” Appl. Phys. Lett. 76, 3346–3348 (2000).
[CrossRef]

M.-X. Qiu, Y. Takagaki, S. Egawa, T. Mizunami, and R. Vilaseca, “Large second-order susceptibility generated in the cathodic face of silica by doping F anions,” Opt. Commun. 172, 97–101 (1999).
[CrossRef]

Quiquempois, Y.

Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. Niay, and M. Douay, “Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses,” Opt. Commun. 176, 479–487 (2000).
[CrossRef]

Ramm, M.

T. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers, and E. H. Adem, “An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference,” Surf. Interface Anal. 18, 59–64 (1992).
[CrossRef]

Rogers, D. C.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P.F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1994).
[CrossRef]

Samoggia, F.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, ’ Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

Schrofel, J.

J. Kosikova and J. Schrofel, “Planar optical waveguides prepared in GIL49 and BK7 glass substrates by K+–Na+ ion exchange with the electric field assistance,” J. Electron. Mater. 28, 1088–1095 (1999).
[CrossRef]

Sellares, J.

M.-X. Qiu, R. Vilaseca, M. Botey, J. Sellares, F. Pi, and G. Orriols, “Double fitting of Maker fringes to characterize near-surface and bulk second-order nonlinearities in poled silica,” Appl. Phys. Lett. 76, 3346–3348 (2000).
[CrossRef]

Shabanova, I. N.

V. S. Kortov, I. N. Shabanova, A. F. Zatsepin, S. F. Lomaeva, V. I. Ushakova, and V. Ya. Bayankin, “Radiation damage to the surface of oxide dielectrics irradiated by fast electrons,” Phys. Chem. Mech. Surf. 2, 529–539 (1984).

Shimomura, T.

M.-X. Qiu, T. Mizunami, T. Shimomura, and M. Ohtaki, “Threshold conditions for bulk second-order nonlinearity and near-surface nonlinearity in thermally poled Infrasil silica,” Opt. Rev. 8, 159–162 (2001).
[CrossRef]

Soga, N.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Sonntag, H.

T. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers, and E. H. Adem, “An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference,” Surf. Interface Anal. 18, 59–64 (1992).
[CrossRef]

Sprenger, D.

D. Sprenger, H. Bach, W. Meisel, and P. Gutlich, “Discrete bond model (DBM) of sodium silicate glasses derived from XPS, Raman, and NMR measurements,” J. Non-Cryst. Solids 159, 187–203 (1993).
[CrossRef]

Takagaki, Y.

M.-X. Qiu, Y. Takagaki, S. Egawa, T. Mizunami, and R. Vilaseca, “Large second-order susceptibility generated in the cathodic face of silica by doping F anions,” Opt. Commun. 172, 97–101 (1999).
[CrossRef]

Tanaka, K.

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys. Condens. Matter 12, L513–L518 (2000).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Tsai, T. E.

Tung, Y. S.

D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
[CrossRef]

Unger, W.

T. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers, and E. H. Adem, “An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference,” Surf. Interface Anal. 18, 59–64 (1992).
[CrossRef]

Ushakova, V. I.

V. S. Kortov, I. N. Shabanova, A. F. Zatsepin, S. F. Lomaeva, V. I. Ushakova, and V. Ya. Bayankin, “Radiation damage to the surface of oxide dielectrics irradiated by fast electrons,” Phys. Chem. Mech. Surf. 2, 529–539 (1984).

Veldhuis, G. J.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P.F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1994).
[CrossRef]

Vilaseca, R.

M.-X. Qiu, R. Vilaseca, M. Botey, J. Sellares, F. Pi, and G. Orriols, “Double fitting of Maker fringes to characterize near-surface and bulk second-order nonlinearities in poled silica,” Appl. Phys. Lett. 76, 3346–3348 (2000).
[CrossRef]

M.-X. Qiu, Y. Takagaki, S. Egawa, T. Mizunami, and R. Vilaseca, “Large second-order susceptibility generated in the cathodic face of silica by doping F anions,” Opt. Commun. 172, 97–101 (1999).
[CrossRef]

Vitiello, M.

G. Pacchioni and M. Vitiello, “Infra-red electron paramagnetic resonance and x-ray photoemission spectral properties of point defects in silica from first-principle calculations,” J. Non-Cryst. Solids 245, 175–182 (1999).
[CrossRef]

Weijers, H. M.

T. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers, and E. H. Adem, “An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference,” Surf. Interface Anal. 18, 59–64 (1992).
[CrossRef]

White, C. W.

D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
[CrossRef]

Wiedenbeck, M.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectroscopy of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[CrossRef]

Yang, G. M.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, ’ Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

Yonezaki, Y.

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys. Condens. Matter 12, L513–L518 (2000).
[CrossRef]

Zatsepin, A. F.

V. S. Kortov, I. N. Shabanova, A. F. Zatsepin, S. F. Lomaeva, V. I. Ushakova, and V. Ya. Bayankin, “Radiation damage to the surface of oxide dielectrics irradiated by fast electrons,” Phys. Chem. Mech. Surf. 2, 529–539 (1984).

Zuhr, R. A.

D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
[CrossRef]

Appl. Phys. Lett.

M.-X. Qiu, R. Vilaseca, M. Botey, J. Sellares, F. Pi, and G. Orriols, “Double fitting of Maker fringes to characterize near-surface and bulk second-order nonlinearities in poled silica,” Appl. Phys. Lett. 76, 3346–3348 (2000).
[CrossRef]

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P.F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1994).
[CrossRef]

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation, ’ Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

J. Am. Ceram. Soc.

D. E. Carlson, “Ion depletion of glass at a blocking anode: I. Theory and experimental results for alkali silicate glasses,” J. Am. Ceram. Soc. 57, 291–294 (1974).
[CrossRef]

J. Appl. Phys.

J. Khaled, T. Fujiwara, M. Ohama, and A. J. Ikushima, “Generation of second harmonic in Ge-doped SiO2 thin films by ultraviolet irradiation under poling electric field,” J. Appl. Phys. 87, 2137–2141 (2000).
[CrossRef]

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectroscopy of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[CrossRef]

J. Electron. Mater.

J. Kosikova and J. Schrofel, “Planar optical waveguides prepared in GIL49 and BK7 glass substrates by K+–Na+ ion exchange with the electric field assistance,” J. Electron. Mater. 28, 1088–1095 (1999).
[CrossRef]

J. Non-Cryst. Solids

V. Nazabal, E. Fargin, C. Labrugere, and G. Le Flem, “Second-harmonic generation optimization in thermally poled borophosphate glasses and characterization by XANES and XPS,” J. Non-Cryst. Solids 270, 223–233 (2000).
[CrossRef]

D. Sprenger, H. Bach, W. Meisel, and P. Gutlich, “Discrete bond model (DBM) of sodium silicate glasses derived from XPS, Raman, and NMR measurements,” J. Non-Cryst. Solids 159, 187–203 (1993).
[CrossRef]

G. Pacchioni and M. Vitiello, “Infra-red electron paramagnetic resonance and x-ray photoemission spectral properties of point defects in silica from first-principle calculations,” J. Non-Cryst. Solids 245, 175–182 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys. Condens. Matter 12, L513–L518 (2000).
[CrossRef]

J. Vac. Sci. Technol. A

D. O. Henderson, M. A. George, Y. S. Tung, R. Mu, A. Burger, S. H. Morgan, W. E. Collins, C. W. White, R. A. Zuhr, and R. H. Magruder III, “X-ray photoelectron and infrared spectroscopies of Cu-implanted silica and borosilicate glasses,” J. Vac. Sci. Technol. A 13, 1254–1259 (1995).
[CrossRef]

Jpn. J. Appl. Phys., Part 2

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Opt. Commun.

M.-X. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of the second-order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[CrossRef]

M.-X. Qiu, Y. Takagaki, S. Egawa, T. Mizunami, and R. Vilaseca, “Large second-order susceptibility generated in the cathodic face of silica by doping F anions,” Opt. Commun. 172, 97–101 (1999).
[CrossRef]

Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. Niay, and M. Douay, “Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses,” Opt. Commun. 176, 479–487 (2000).
[CrossRef]

Opt. Lett.

Opt. Rev.

M.-X. Qiu, T. Mizunami, T. Shimomura, and M. Ohtaki, “Threshold conditions for bulk second-order nonlinearity and near-surface nonlinearity in thermally poled Infrasil silica,” Opt. Rev. 8, 159–162 (2001).
[CrossRef]

Phys. Chem. Mech. Surf.

V. S. Kortov, I. N. Shabanova, A. F. Zatsepin, S. F. Lomaeva, V. I. Ushakova, and V. Ya. Bayankin, “Radiation damage to the surface of oxide dielectrics irradiated by fast electrons,” Phys. Chem. Mech. Surf. 2, 529–539 (1984).

Surf. Interface Anal.

T. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers, and E. H. Adem, “An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference,” Surf. Interface Anal. 18, 59–64 (1992).
[CrossRef]

Other

M.-X. Qiu, T. Mizunami, H. Koya, F. Pi, and G. Orriols, “Large second-order susceptibility in poled ZF7 lead silica for sum-frequency generation,” in Proceedings of Nonlinear Optics ’98, catalog no. 98CH36244 (Institute of Electrical and Electronic Engineers, Piscataway, N.J., 1998), pp. 370–372.

D. S. Chemla and J. Zyss, eds. Nonlinear Properties of Organic Molecules and Crystals (Academic, New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Measured profile of a Maker fringe of BK7 glass poled at 250 °C and 3.5 kV for 30 min. The Maker fringe shows pure near-surface second-order nonlinearity.

Fig. 2
Fig. 2

Decay of the SH signal with time at room temperature. The sample was poled at 250 °C and 3.5 kV for 30 min.

Fig. 3
Fig. 3

Dependence of SH signal on (a) poling temperature at 3.5 kV for 30 min, (b) poling time at 350 °C and 3.5 kV, and (c) poling voltage at 350 °C for 30 min.

Fig. 4
Fig. 4

Evolution of the thickness of the second-order nonlinear layer with poling time.

Fig. 5
Fig. 5

(a) Maker fringe by BK7 glass poled at 400 °C and 3.5 kV for 3.5 h, showing the mixture of bulk SON and near-surface SON. (b) Corresponding Maker fringe from the double fitting method.12

Fig. 6
Fig. 6

O (1s) peaks for (a) non-poled BK7 glass, (b) the anodic surface of poled BK7 glass, and (c) the cathodic surface of poled BK7 glass. The deconvolution curves are also shown in (c). For correction for a charge shift, see text.

Fig. 7
Fig. 7

Si (2p) XPS peaks for (a) nonpoled BK7 glass, (b) the anodic surface of poled BK7 glass, and (c) the cathodic surface of poled BK7 glass. The deconvolution curves are also shown in (a) and (b). For correction for a charge shift, see text.

Tables (2)

Tables Icon

Table 1 Composition of BK7 Glass

Tables Icon

Table 2 Atomic Composition Ratio of Poled BK7 Glass by XPS Measurement

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S=(A/Tb)exp(-eE/kT),
S=BVd,

Metrics