Abstract

We present detailed experimental results of simultaneous frequency doubling and pulse compression of chirped pulses from a femtosecond optical parametric oscillator using a second-harmonic crystal of aperiodically poled lithium niobate comprising eight different linearly chirped gratings. Our results are compared with a numerical model that incorporates the complex amplitude of the input pulse determined with frequency-resolved optical gating. We use the results of this model to analyze and discuss several aspects of the pulse-generation process.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Compression of ultrashort pulses using second-harmonic generation in aperiodically poled lithium niobate,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), postdeadline paper CPD6–2.
  2. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett. 22, 1341–1343 (1997).
    [CrossRef]
  3. A. Galvanauskas, D. Harter, M. A. Arbore, M. H. Chou, and M. M. Fejer, “Chirped-pulse amplification circuits for fiber amplifiers, based on chirped-period quasi-phase-matching gratings,” Opt. Lett. 23, 1695–1697 (1998).
    [CrossRef]
  4. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
    [CrossRef] [PubMed]
  5. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
    [CrossRef]
  6. P. Loza-Alvarez, D. T. Reid, P. Faller, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, “Simultaneous femtosecond-pulse compression and second-harmonic generation in aperiodically poled KTiOPO4,” Opt. Lett. 24, 1071–1073 (1999).
    [CrossRef]
  7. P. Loza-Alvarez, D. T. Reid, P. Faller, M. Ebrahimzadeh, and W. Sibbett, “Simultaneous second-harmonic generation and femtosecond-pulse compression in aperiodically poled KTiOPO4 with a RbTiOAsO4-based optical parametric oscillator,” J. Opt. Soc. Am. B 16, 1553–1560 (1999).
    [CrossRef]
  8. K. W. Delong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1995).
    [CrossRef]
  9. D. T. Reid, C. McGowan, W. Sleat, M. Ebrahimzadeh, and W. Sibbett, “A real-time FROG trace acquisition system for non-amplified femtosecond oscillators,” Engineering and Laboratory Notes, 2-page supplement to Opt. Photon. News (May 1997), p. 8.
  10. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  11. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  12. D. J. L. Birkin, E. U. Rafailov, G. S. Sokolovskii, D. T. Reid, W. Sibbett, G. W. Ross, P. G. R. Smith, and D. C. Hanna, “3.25-mW blue light by direct frequency-doubling of a 980-nm diode laser using an aperiodically poled LiNbO3 crystal,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington D.C., 2000), paper CThH3.
  13. T. Beddard, M. Ebrahimzadeh, D. T. Reid, and W. Sibbett, “Five-optical-cycle pulse generation in the mid-infrared from an optical parametric oscillator based on aperiodically poled lithium niobate,” Opt. Lett. 25, 1052–1054 (2000).
    [CrossRef]

2000

1999

1998

1997

1995

Arbore, M. A.

Beddard, T.

Bosenberg, W. R.

Byer, R. L.

Chou, M. H.

Delong, K. W.

Ebrahimzadeh, M.

Eckardt, R. C.

Faller, P.

Fejer, M. M.

Fermann, M.

Galvanauskas, A.

Harter, D.

Hunter, J.

Imeshev, G.

Jundt, D. H.

Karlsson, H.

Laurell, F.

Loza-Alvarez, P.

Marco, O.

Myers, L. E.

Pierce, J. W.

Reid, D. T.

Sibbett, W.

Trebino, R.

White, W. E.

J. Opt. Soc. Am. B

Opt. Lett.

Other

M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Compression of ultrashort pulses using second-harmonic generation in aperiodically poled lithium niobate,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), postdeadline paper CPD6–2.

D. J. L. Birkin, E. U. Rafailov, G. S. Sokolovskii, D. T. Reid, W. Sibbett, G. W. Ross, P. G. R. Smith, and D. C. Hanna, “3.25-mW blue light by direct frequency-doubling of a 980-nm diode laser using an aperiodically poled LiNbO3 crystal,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington D.C., 2000), paper CThH3.

D. T. Reid, C. McGowan, W. Sleat, M. Ebrahimzadeh, and W. Sibbett, “A real-time FROG trace acquisition system for non-amplified femtosecond oscillators,” Engineering and Laboratory Notes, 2-page supplement to Opt. Photon. News (May 1997), p. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental arrangement for simultaneous SHG and pulse compression with a crystal of PPLN with eight different linearly chirped gratings.

Fig. 2
Fig. 2

FROG characterization of the signal output from the PPRTA-based OPO showing pulse durations of Δτ=280 fs with positive quadratic phase: (a) experimental and retrieved FROG traces, (b) temporal intensity profile and phase of the retrieved pulses, (c) measured (solid curve) and retrieved (dots) spectra of the pulses centred at 1.25 µm and with a spectral bandwidth of 13.3 nm, (d) measured (solid curve) and retrieved (dashed curve) intensity autocorrelations.

Fig. 3
Fig. 3

Measured average output power (filled circles) and calculated (curve plus open squares) average output power of the SHG pulses generated in each of the crystal gratings.

Fig. 4
Fig. 4

(a) Measured (shading) and calculated (black curve) interferometric and (b) measured (solid curve) and calculated (dashed curve) intensity autocorrelations. (c) Measured (solid curve) and calculated (dashed curve) spectra. The autocorrelations and spectra shown correspond to each of the crystal gratings when ΔG0.

Fig. 5
Fig. 5

(a) Measured (shading) and calculated (black curve) interferometric and (b) measured (solid curve) and calculated (dashed curve) intensity autocorrelations. (c) Measured (solid curve) and calculated (dashed curve) spectra. The autocorrelations and spectra shown correspond to each of the crystal gratings when ΔG0.

Fig. 6
Fig. 6

Measured (symbols) pulse duration inferred from SHG intensity autocorrelations of the pulses obtained for the different crystal gratings. Calculated intensity autocorrelations directly after the crystal (dashed curve) and assuming dispersion from unpoled regions in the crystal and collimation optics (solid curve).

Fig. 7
Fig. 7

Calculated intensity profiles and phase of the SHG pulses: (a) ΔG0 and (b) ΔG0.

Tables (1)

Tables Icon

Table 1 Initial and Final Periods and Total Crystal Chirp of the Different Gratings of the PPLN Crystal

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δg=Λi-ΛfΛ0,
i A1(z, t)z+ik1 A1(z, t)t-12k1 2A1(z, t)t2
+σ(z)Γ1A1*(z, t)A2(z, t)exp(iΔkz)=0,
i A2(z, t)z+ik2 A2(z, t)t-12k2 2A2(z, t)t2
+σ(z)Γ2A12(z, t)exp(-iΔkz)=0,

Metrics