Abstract

Measurements of the magnitude and the sign of certain quadratic electro-optic coefficients of potassium dihydrogen phosphate (KDP) and ammonium dihydrogen phosphate (ADP) were made with an actively stabilized Michelson interferometer. The results obtained for these coefficients are, in units of 10-20 m2 V-2 (as opposed to literature values of order 10-18 m2 V-2), as follows: (KDP)gxxxx=-3.4±0.5,gyyxx=-0.2±0.4, and gzzxx=-0.7±0.4;(ADP)gxxxx=-7.4±1.0,gyyxx=-1.7±0.9, and gzzxx=-1.4±0.9. The quadratic Faust–Henry coefficient describing the lattice and the electronic contributions to the quadratic electro-optic effect in KDP and ADP is estimated from our results. These show that the nonlinear susceptibility responsible for the quadratic electro-optic effect in these crystals is due mainly to nonlinear interactions of the low-frequency electric field with the crystal lattice.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Górski, D. Mik, W. Kucharczyk, and R. E. Raab, “On the quadratic electro-optic effect in KDP,” Physica B 193, 17–24 (1994).
    [CrossRef]
  2. B. H. Billings, “The electro-optic effect in uniaxial crystals of the type XH2PO4. I. Theoretical,” J. Opt. Soc. Am. 39, 797–801 (1949).
    [CrossRef]
  3. K.-H. Hellwege and A. M. Hellwege, eds., Numerical Data and Functional Relationships in Science and Technology, Vol. 11 of Landolt-Börnstein, New Series, Group III (Springer, Berlin, 1979); see also Vol. 18 (1984).
  4. M. J. Gunning, R. Ledzion, P. Górski, and W. Kucharczyk, “Studies of the quadratic electro-optic effect in KDP-type crystals,” in International Conference on Solid State Crystals ’98: Single Crystal Growth, Characterization, and Applications, A. Majchrowski and J. Zielinski, eds., Proc. SPIE 3724, 249–255 (1999).
    [CrossRef]
  5. V. E. Perfilova and A. S. Sonin, “Quadratic electrooptic effect in KDP group crystals,” Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 1136–1138 (1967) [Bull. Acad. Sci. USSR, Phys. Ser. (Engl. Transl.) 31, 1154–1157 (1967)].
  6. P. Górski and W. Kucharczyk, “The quadratic electrooptic effect in KDP and ADP crystals,” Phys. Status Solidi A 103, K65–K67 (1987).
    [CrossRef]
  7. W. Kucharczyk, M. J. Gunning, R. E. Raab, and C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
    [CrossRef]
  8. B. N. Grib, I. I. Kondilenko, and P. A. Korotkov, “Electrooptical deflection from potassium dihydrogen phosphate crystals and its use in frequency reforming in a neodymium laser,” Zh. Prikl. Spektrosk. 23, 804–810 (1975) [J. Appl. Spectrosc. 23, 1449–1455 (1975)].
    [CrossRef]
  9. W. Jamroz, J. Karniewicz, and J. Stachowiak, “Nonlinear electrooptic effects in KDP and DKDP crystals,” Kvantovaya Elektron. 6, 1365–1369 (1979) [Sov. J. Quantum Electron. 6, 803–805 (1979)].
    [CrossRef]
  10. W. Jamroz and J. Karniewicz, “The electro-optic Kerr effect in noncentrosymmetric KH2PO4 and KD2PO4 monocrystals,” Opt. Quantum Electron. 11, 23–27 (1979).
    [CrossRef]
  11. M. J. Gunning, R. E. Raab, P. Górski, and W. Kucharczyk, “The quadratic electrooptic effect and estimation of antipolarization in ADP,” Ferroelectr. Lett. Sect. 24, 63–68 (1998).
    [CrossRef]
  12. R. Ledzion, K. Bondarczuk, P. Górski, and W. Kucharczyk, “Effect of deuteration on the quadratic electrooptic properties of KDP,” Cryst. Res. Technol. 34, 745–749 (1999).
    [CrossRef]
  13. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  14. K. Hruška, “Measurement of electrostriction coefficients of crystals of ammonium dihydrogen phosphate (ADP),” Kristallografiya 10, 428–429 (1965) [Sov. Phys. Crystallogr. 10, 351–352 (1965)].
  15. M. P. Zaitseva and A. A. Fotchenkov, “Experimental determination of some electrostriction coefficients for ammonium dihydrogen phosphate,” Kristallografiya 12, 716–717 (1967) (in Russian).
  16. A. M. Sysoev, “Electrostriction, and dielectric and piezoelectric nonlinearity of a KDP crystal,” Fiz. Tverd. Tela (Leningrad) 34, 2874–2881 (1992) [Sov. Phys. Solid State 34, 1538–1542 (1992)].
  17. M. L. N. Madhu Mohan and C. Haranadh, “The measurement of electrostriction coefficients of some XH2PO4/H3BO3 binaries by interferometric technique,” Bull. Mater. Sci. 18, 599–602 (1995).
    [CrossRef]
  18. M. J. Gunning, “Some experimental and theoretical studies in crystal optics,” Ph.D. dissertation (University of Natal, Scottsville, South Africa, 1999).
  19. M. J. Gunning, R. E. Raab, and W. Kucharczyk, “Interfero-metric measurements of electrostrictive coefficients of KDP and ADP in transmission,” Ferroelectr. Lett. Sect. 28, 93–102 (2001).
    [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).
  21. M. J. Gunning and R. E. Raab, “Systematic eigenvalue approach to crystal optics: an analytic alternative to the geometric ellipsoid model,” J. Opt. Soc. Am. A 15, 2199–2207 (1998).
    [CrossRef]
  22. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 15th ed. (Longman, New York, 1986).
  23. A. D. Buckingham, M. D. Bogaard, D. A. Dunmur, C. P. Hobbs, and B. J. Orr, “Kerr effect in some simple non-dipolar gases,” Trans. Faraday Soc. 66, 1548–1553 (1970).
    [CrossRef]
  24. R. Ledzion, K. Bondarczuk, P. Górski, and W. Kucharczyk, “Kerr constants of some mineral and silicone oils,” Kvant. Elektron. (Moscow) 28, 183–185 (1999) [Quantum Electron. 29, 739–741 (1999)].
    [CrossRef]
  25. S. Haussühl and G. Walda, “Measurement of the absolute quadratic electro-optical effects in crystals. Example LiF and alpha-TlAl(SO4)2.12H2O,” Phys. Status Solidi A 5, K163–K165 (1971) (in German).
    [CrossRef]
  26. L. Bohatý, “Dynamic method for measurement of electrostrictive and electrooptical effects. Tincalconite, Na2B4O5(OH)4.3H2O,” Z. Kristallogr. 158, 233–239 (1982) (in German).
  27. S. W. P. van Sterkenburg, “Measurement of the electrostrictive tensor of eight alkali halides,” J. Phys. D 24, 1853–1857 (1991).
    [CrossRef]
  28. Q. M. Zhang, W. Y. Pan, and L. E. Cross, “Laser interferometer for the study of piezoelectric and electrostrictive strains,” J. Appl. Phys. 63, 2492–2496 (1988).
    [CrossRef]
  29. G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
    [CrossRef]
  30. G. Kloos, “Correction of low-frequency measurements of the quadratic electro-optic effect for electrostatic stresses,” Appl. Opt. 35, 5398–5401 (1996).
    [CrossRef] [PubMed]
  31. J. Schreuer and S. Haussühl, “A re-investigation of the quadratic electrostriction of alkali halides of rocksalt type,” J. Phys. D 32, 1263–1270 (1999).
    [CrossRef]
  32. E. Burnstein, A. A. Maradudin, E. Anastassakis, and A. Pinczuk, “Electric field induced infrared absorption and Raman scattering by optical phonons in centrosymmetric crystals,” Helv. Phys. Acta 41, 730–740 (1968).
  33. G. D. Mahan and K. R. Subbaswamy, “Electro-optic contribution to Raman scattering from alkali halides,” Phys. Rev. B 33, 8657–8663 (1986).
    [CrossRef]
  34. H. Vogt and H. Presting, “Hyper-Raman scattering from alkali halides,” Phys. Rev. B 31, 6731–6738 (1985).
    [CrossRef]
  35. W. L. Faust and C. H. Henry, “Mixing of visible and near-resonance infrared light in GaP,” Phys. Rev. Lett. 17, 1265–1268 (1966).
    [CrossRef]
  36. P. Górski, M. Kin, and W. Kucharczyk, “On the application of a generalized form of Miller’s δ coefficient to nonlinear refractive indices in partially ionic crystals,” J. Phys. D 30, 1111–1114 (1997).
    [CrossRef]
  37. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
    [CrossRef]
  38. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  39. M. Izdebski, W. Kucharczyk, and R. E. Raab, “Effect of beam divergence from the optic axis in an electro-optic experiment to measure an induced Jones birefringence,” J. Opt. Soc. Am. A 18, 1393–1398 (2001).
    [CrossRef]

2001 (2)

M. J. Gunning, R. E. Raab, and W. Kucharczyk, “Interfero-metric measurements of electrostrictive coefficients of KDP and ADP in transmission,” Ferroelectr. Lett. Sect. 28, 93–102 (2001).
[CrossRef]

M. Izdebski, W. Kucharczyk, and R. E. Raab, “Effect of beam divergence from the optic axis in an electro-optic experiment to measure an induced Jones birefringence,” J. Opt. Soc. Am. A 18, 1393–1398 (2001).
[CrossRef]

1999 (3)

J. Schreuer and S. Haussühl, “A re-investigation of the quadratic electrostriction of alkali halides of rocksalt type,” J. Phys. D 32, 1263–1270 (1999).
[CrossRef]

M. J. Gunning, R. Ledzion, P. Górski, and W. Kucharczyk, “Studies of the quadratic electro-optic effect in KDP-type crystals,” in International Conference on Solid State Crystals ’98: Single Crystal Growth, Characterization, and Applications, A. Majchrowski and J. Zielinski, eds., Proc. SPIE 3724, 249–255 (1999).
[CrossRef]

R. Ledzion, K. Bondarczuk, P. Górski, and W. Kucharczyk, “Effect of deuteration on the quadratic electrooptic properties of KDP,” Cryst. Res. Technol. 34, 745–749 (1999).
[CrossRef]

1998 (2)

M. J. Gunning and R. E. Raab, “Systematic eigenvalue approach to crystal optics: an analytic alternative to the geometric ellipsoid model,” J. Opt. Soc. Am. A 15, 2199–2207 (1998).
[CrossRef]

M. J. Gunning, R. E. Raab, P. Górski, and W. Kucharczyk, “The quadratic electrooptic effect and estimation of antipolarization in ADP,” Ferroelectr. Lett. Sect. 24, 63–68 (1998).
[CrossRef]

1997 (2)

P. Górski, M. Kin, and W. Kucharczyk, “On the application of a generalized form of Miller’s δ coefficient to nonlinear refractive indices in partially ionic crystals,” J. Phys. D 30, 1111–1114 (1997).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[CrossRef]

1996 (1)

1995 (2)

M. L. N. Madhu Mohan and C. Haranadh, “The measurement of electrostriction coefficients of some XH2PO4/H3BO3 binaries by interferometric technique,” Bull. Mater. Sci. 18, 599–602 (1995).
[CrossRef]

W. Kucharczyk, M. J. Gunning, R. E. Raab, and C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[CrossRef]

1994 (1)

P. Górski, D. Mik, W. Kucharczyk, and R. E. Raab, “On the quadratic electro-optic effect in KDP,” Physica B 193, 17–24 (1994).
[CrossRef]

1991 (1)

S. W. P. van Sterkenburg, “Measurement of the electrostrictive tensor of eight alkali halides,” J. Phys. D 24, 1853–1857 (1991).
[CrossRef]

1989 (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

1988 (1)

Q. M. Zhang, W. Y. Pan, and L. E. Cross, “Laser interferometer for the study of piezoelectric and electrostrictive strains,” J. Appl. Phys. 63, 2492–2496 (1988).
[CrossRef]

1987 (1)

P. Górski and W. Kucharczyk, “The quadratic electrooptic effect in KDP and ADP crystals,” Phys. Status Solidi A 103, K65–K67 (1987).
[CrossRef]

1986 (1)

G. D. Mahan and K. R. Subbaswamy, “Electro-optic contribution to Raman scattering from alkali halides,” Phys. Rev. B 33, 8657–8663 (1986).
[CrossRef]

1985 (1)

H. Vogt and H. Presting, “Hyper-Raman scattering from alkali halides,” Phys. Rev. B 31, 6731–6738 (1985).
[CrossRef]

1982 (2)

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
[CrossRef]

L. Bohatý, “Dynamic method for measurement of electrostrictive and electrooptical effects. Tincalconite, Na2B4O5(OH)4.3H2O,” Z. Kristallogr. 158, 233–239 (1982) (in German).

1979 (2)

W. Jamroz, J. Karniewicz, and J. Stachowiak, “Nonlinear electrooptic effects in KDP and DKDP crystals,” Kvantovaya Elektron. 6, 1365–1369 (1979) [Sov. J. Quantum Electron. 6, 803–805 (1979)].
[CrossRef]

W. Jamroz and J. Karniewicz, “The electro-optic Kerr effect in noncentrosymmetric KH2PO4 and KD2PO4 monocrystals,” Opt. Quantum Electron. 11, 23–27 (1979).
[CrossRef]

1971 (1)

S. Haussühl and G. Walda, “Measurement of the absolute quadratic electro-optical effects in crystals. Example LiF and alpha-TlAl(SO4)2.12H2O,” Phys. Status Solidi A 5, K163–K165 (1971) (in German).
[CrossRef]

1970 (1)

A. D. Buckingham, M. D. Bogaard, D. A. Dunmur, C. P. Hobbs, and B. J. Orr, “Kerr effect in some simple non-dipolar gases,” Trans. Faraday Soc. 66, 1548–1553 (1970).
[CrossRef]

1968 (1)

E. Burnstein, A. A. Maradudin, E. Anastassakis, and A. Pinczuk, “Electric field induced infrared absorption and Raman scattering by optical phonons in centrosymmetric crystals,” Helv. Phys. Acta 41, 730–740 (1968).

1967 (1)

M. P. Zaitseva and A. A. Fotchenkov, “Experimental determination of some electrostriction coefficients for ammonium dihydrogen phosphate,” Kristallografiya 12, 716–717 (1967) (in Russian).

1966 (1)

W. L. Faust and C. H. Henry, “Mixing of visible and near-resonance infrared light in GaP,” Phys. Rev. Lett. 17, 1265–1268 (1966).
[CrossRef]

1949 (1)

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

Anastassakis, E.

E. Burnstein, A. A. Maradudin, E. Anastassakis, and A. Pinczuk, “Electric field induced infrared absorption and Raman scattering by optical phonons in centrosymmetric crystals,” Helv. Phys. Acta 41, 730–740 (1968).

Bhar, G. C.

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
[CrossRef]

Billings, B. H.

Bogaard, M. D.

A. D. Buckingham, M. D. Bogaard, D. A. Dunmur, C. P. Hobbs, and B. J. Orr, “Kerr effect in some simple non-dipolar gases,” Trans. Faraday Soc. 66, 1548–1553 (1970).
[CrossRef]

Bohatý, L.

L. Bohatý, “Dynamic method for measurement of electrostrictive and electrooptical effects. Tincalconite, Na2B4O5(OH)4.3H2O,” Z. Kristallogr. 158, 233–239 (1982) (in German).

Bondarczuk, K.

R. Ledzion, K. Bondarczuk, P. Górski, and W. Kucharczyk, “Effect of deuteration on the quadratic electrooptic properties of KDP,” Cryst. Res. Technol. 34, 745–749 (1999).
[CrossRef]

Buckingham, A. D.

A. D. Buckingham, M. D. Bogaard, D. A. Dunmur, C. P. Hobbs, and B. J. Orr, “Kerr effect in some simple non-dipolar gases,” Trans. Faraday Soc. 66, 1548–1553 (1970).
[CrossRef]

Burnstein, E.

E. Burnstein, A. A. Maradudin, E. Anastassakis, and A. Pinczuk, “Electric field induced infrared absorption and Raman scattering by optical phonons in centrosymmetric crystals,” Helv. Phys. Acta 41, 730–740 (1968).

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

Cross, L. E.

Q. M. Zhang, W. Y. Pan, and L. E. Cross, “Laser interferometer for the study of piezoelectric and electrostrictive strains,” J. Appl. Phys. 63, 2492–2496 (1988).
[CrossRef]

Dunmur, D. A.

A. D. Buckingham, M. D. Bogaard, D. A. Dunmur, C. P. Hobbs, and B. J. Orr, “Kerr effect in some simple non-dipolar gases,” Trans. Faraday Soc. 66, 1548–1553 (1970).
[CrossRef]

Faust, W. L.

W. L. Faust and C. H. Henry, “Mixing of visible and near-resonance infrared light in GaP,” Phys. Rev. Lett. 17, 1265–1268 (1966).
[CrossRef]

Fotchenkov, A. A.

M. P. Zaitseva and A. A. Fotchenkov, “Experimental determination of some electrostriction coefficients for ammonium dihydrogen phosphate,” Kristallografiya 12, 716–717 (1967) (in Russian).

Ghosh, G. C.

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
[CrossRef]

Górski, P.

R. Ledzion, K. Bondarczuk, P. Górski, and W. Kucharczyk, “Effect of deuteration on the quadratic electrooptic properties of KDP,” Cryst. Res. Technol. 34, 745–749 (1999).
[CrossRef]

M. J. Gunning, R. Ledzion, P. Górski, and W. Kucharczyk, “Studies of the quadratic electro-optic effect in KDP-type crystals,” in International Conference on Solid State Crystals ’98: Single Crystal Growth, Characterization, and Applications, A. Majchrowski and J. Zielinski, eds., Proc. SPIE 3724, 249–255 (1999).
[CrossRef]

M. J. Gunning, R. E. Raab, P. Górski, and W. Kucharczyk, “The quadratic electrooptic effect and estimation of antipolarization in ADP,” Ferroelectr. Lett. Sect. 24, 63–68 (1998).
[CrossRef]

P. Górski, M. Kin, and W. Kucharczyk, “On the application of a generalized form of Miller’s δ coefficient to nonlinear refractive indices in partially ionic crystals,” J. Phys. D 30, 1111–1114 (1997).
[CrossRef]

P. Górski, D. Mik, W. Kucharczyk, and R. E. Raab, “On the quadratic electro-optic effect in KDP,” Physica B 193, 17–24 (1994).
[CrossRef]

P. Górski and W. Kucharczyk, “The quadratic electrooptic effect in KDP and ADP crystals,” Phys. Status Solidi A 103, K65–K67 (1987).
[CrossRef]

Graham, C.

W. Kucharczyk, M. J. Gunning, R. E. Raab, and C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[CrossRef]

Gunning, M. J.

M. J. Gunning, R. E. Raab, and W. Kucharczyk, “Interfero-metric measurements of electrostrictive coefficients of KDP and ADP in transmission,” Ferroelectr. Lett. Sect. 28, 93–102 (2001).
[CrossRef]

M. J. Gunning, R. Ledzion, P. Górski, and W. Kucharczyk, “Studies of the quadratic electro-optic effect in KDP-type crystals,” in International Conference on Solid State Crystals ’98: Single Crystal Growth, Characterization, and Applications, A. Majchrowski and J. Zielinski, eds., Proc. SPIE 3724, 249–255 (1999).
[CrossRef]

M. J. Gunning, R. E. Raab, P. Górski, and W. Kucharczyk, “The quadratic electrooptic effect and estimation of antipolarization in ADP,” Ferroelectr. Lett. Sect. 24, 63–68 (1998).
[CrossRef]

M. J. Gunning and R. E. Raab, “Systematic eigenvalue approach to crystal optics: an analytic alternative to the geometric ellipsoid model,” J. Opt. Soc. Am. A 15, 2199–2207 (1998).
[CrossRef]

W. Kucharczyk, M. J. Gunning, R. E. Raab, and C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[CrossRef]

Haranadh, C.

M. L. N. Madhu Mohan and C. Haranadh, “The measurement of electrostriction coefficients of some XH2PO4/H3BO3 binaries by interferometric technique,” Bull. Mater. Sci. 18, 599–602 (1995).
[CrossRef]

Haussühl, S.

J. Schreuer and S. Haussühl, “A re-investigation of the quadratic electrostriction of alkali halides of rocksalt type,” J. Phys. D 32, 1263–1270 (1999).
[CrossRef]

S. Haussühl and G. Walda, “Measurement of the absolute quadratic electro-optical effects in crystals. Example LiF and alpha-TlAl(SO4)2.12H2O,” Phys. Status Solidi A 5, K163–K165 (1971) (in German).
[CrossRef]

Henry, C. H.

W. L. Faust and C. H. Henry, “Mixing of visible and near-resonance infrared light in GaP,” Phys. Rev. Lett. 17, 1265–1268 (1966).
[CrossRef]

Hobbs, C. P.

A. D. Buckingham, M. D. Bogaard, D. A. Dunmur, C. P. Hobbs, and B. J. Orr, “Kerr effect in some simple non-dipolar gases,” Trans. Faraday Soc. 66, 1548–1553 (1970).
[CrossRef]

Ito, R.

Izdebski, M.

Jamroz, W.

W. Jamroz and J. Karniewicz, “The electro-optic Kerr effect in noncentrosymmetric KH2PO4 and KD2PO4 monocrystals,” Opt. Quantum Electron. 11, 23–27 (1979).
[CrossRef]

W. Jamroz, J. Karniewicz, and J. Stachowiak, “Nonlinear electrooptic effects in KDP and DKDP crystals,” Kvantovaya Elektron. 6, 1365–1369 (1979) [Sov. J. Quantum Electron. 6, 803–805 (1979)].
[CrossRef]

Karniewicz, J.

W. Jamroz, J. Karniewicz, and J. Stachowiak, “Nonlinear electrooptic effects in KDP and DKDP crystals,” Kvantovaya Elektron. 6, 1365–1369 (1979) [Sov. J. Quantum Electron. 6, 803–805 (1979)].
[CrossRef]

W. Jamroz and J. Karniewicz, “The electro-optic Kerr effect in noncentrosymmetric KH2PO4 and KD2PO4 monocrystals,” Opt. Quantum Electron. 11, 23–27 (1979).
[CrossRef]

Kin, M.

P. Górski, M. Kin, and W. Kucharczyk, “On the application of a generalized form of Miller’s δ coefficient to nonlinear refractive indices in partially ionic crystals,” J. Phys. D 30, 1111–1114 (1997).
[CrossRef]

Kitamoto, A.

Kloos, G.

Kondo, T.

Kucharczyk, W.

M. Izdebski, W. Kucharczyk, and R. E. Raab, “Effect of beam divergence from the optic axis in an electro-optic experiment to measure an induced Jones birefringence,” J. Opt. Soc. Am. A 18, 1393–1398 (2001).
[CrossRef]

M. J. Gunning, R. E. Raab, and W. Kucharczyk, “Interfero-metric measurements of electrostrictive coefficients of KDP and ADP in transmission,” Ferroelectr. Lett. Sect. 28, 93–102 (2001).
[CrossRef]

R. Ledzion, K. Bondarczuk, P. Górski, and W. Kucharczyk, “Effect of deuteration on the quadratic electrooptic properties of KDP,” Cryst. Res. Technol. 34, 745–749 (1999).
[CrossRef]

M. J. Gunning, R. Ledzion, P. Górski, and W. Kucharczyk, “Studies of the quadratic electro-optic effect in KDP-type crystals,” in International Conference on Solid State Crystals ’98: Single Crystal Growth, Characterization, and Applications, A. Majchrowski and J. Zielinski, eds., Proc. SPIE 3724, 249–255 (1999).
[CrossRef]

M. J. Gunning, R. E. Raab, P. Górski, and W. Kucharczyk, “The quadratic electrooptic effect and estimation of antipolarization in ADP,” Ferroelectr. Lett. Sect. 24, 63–68 (1998).
[CrossRef]

P. Górski, M. Kin, and W. Kucharczyk, “On the application of a generalized form of Miller’s δ coefficient to nonlinear refractive indices in partially ionic crystals,” J. Phys. D 30, 1111–1114 (1997).
[CrossRef]

W. Kucharczyk, M. J. Gunning, R. E. Raab, and C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[CrossRef]

P. Górski, D. Mik, W. Kucharczyk, and R. E. Raab, “On the quadratic electro-optic effect in KDP,” Physica B 193, 17–24 (1994).
[CrossRef]

P. Górski and W. Kucharczyk, “The quadratic electrooptic effect in KDP and ADP crystals,” Phys. Status Solidi A 103, K65–K67 (1987).
[CrossRef]

Ledzion, R.

M. J. Gunning, R. Ledzion, P. Górski, and W. Kucharczyk, “Studies of the quadratic electro-optic effect in KDP-type crystals,” in International Conference on Solid State Crystals ’98: Single Crystal Growth, Characterization, and Applications, A. Majchrowski and J. Zielinski, eds., Proc. SPIE 3724, 249–255 (1999).
[CrossRef]

R. Ledzion, K. Bondarczuk, P. Górski, and W. Kucharczyk, “Effect of deuteration on the quadratic electrooptic properties of KDP,” Cryst. Res. Technol. 34, 745–749 (1999).
[CrossRef]

Madhu Mohan, M. L. N.

M. L. N. Madhu Mohan and C. Haranadh, “The measurement of electrostriction coefficients of some XH2PO4/H3BO3 binaries by interferometric technique,” Bull. Mater. Sci. 18, 599–602 (1995).
[CrossRef]

Mahan, G. D.

G. D. Mahan and K. R. Subbaswamy, “Electro-optic contribution to Raman scattering from alkali halides,” Phys. Rev. B 33, 8657–8663 (1986).
[CrossRef]

Maradudin, A. A.

E. Burnstein, A. A. Maradudin, E. Anastassakis, and A. Pinczuk, “Electric field induced infrared absorption and Raman scattering by optical phonons in centrosymmetric crystals,” Helv. Phys. Acta 41, 730–740 (1968).

Mik, D.

P. Górski, D. Mik, W. Kucharczyk, and R. E. Raab, “On the quadratic electro-optic effect in KDP,” Physica B 193, 17–24 (1994).
[CrossRef]

Orr, B. J.

A. D. Buckingham, M. D. Bogaard, D. A. Dunmur, C. P. Hobbs, and B. J. Orr, “Kerr effect in some simple non-dipolar gases,” Trans. Faraday Soc. 66, 1548–1553 (1970).
[CrossRef]

Pan, W. Y.

Q. M. Zhang, W. Y. Pan, and L. E. Cross, “Laser interferometer for the study of piezoelectric and electrostrictive strains,” J. Appl. Phys. 63, 2492–2496 (1988).
[CrossRef]

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

Pinczuk, A.

E. Burnstein, A. A. Maradudin, E. Anastassakis, and A. Pinczuk, “Electric field induced infrared absorption and Raman scattering by optical phonons in centrosymmetric crystals,” Helv. Phys. Acta 41, 730–740 (1968).

Presting, H.

H. Vogt and H. Presting, “Hyper-Raman scattering from alkali halides,” Phys. Rev. B 31, 6731–6738 (1985).
[CrossRef]

Raab, R. E.

M. Izdebski, W. Kucharczyk, and R. E. Raab, “Effect of beam divergence from the optic axis in an electro-optic experiment to measure an induced Jones birefringence,” J. Opt. Soc. Am. A 18, 1393–1398 (2001).
[CrossRef]

M. J. Gunning, R. E. Raab, and W. Kucharczyk, “Interfero-metric measurements of electrostrictive coefficients of KDP and ADP in transmission,” Ferroelectr. Lett. Sect. 28, 93–102 (2001).
[CrossRef]

M. J. Gunning, R. E. Raab, P. Górski, and W. Kucharczyk, “The quadratic electrooptic effect and estimation of antipolarization in ADP,” Ferroelectr. Lett. Sect. 24, 63–68 (1998).
[CrossRef]

M. J. Gunning and R. E. Raab, “Systematic eigenvalue approach to crystal optics: an analytic alternative to the geometric ellipsoid model,” J. Opt. Soc. Am. A 15, 2199–2207 (1998).
[CrossRef]

W. Kucharczyk, M. J. Gunning, R. E. Raab, and C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[CrossRef]

P. Górski, D. Mik, W. Kucharczyk, and R. E. Raab, “On the quadratic electro-optic effect in KDP,” Physica B 193, 17–24 (1994).
[CrossRef]

Schreuer, J.

J. Schreuer and S. Haussühl, “A re-investigation of the quadratic electrostriction of alkali halides of rocksalt type,” J. Phys. D 32, 1263–1270 (1999).
[CrossRef]

Shirane, M.

Shoji, I.

Stachowiak, J.

W. Jamroz, J. Karniewicz, and J. Stachowiak, “Nonlinear electrooptic effects in KDP and DKDP crystals,” Kvantovaya Elektron. 6, 1365–1369 (1979) [Sov. J. Quantum Electron. 6, 803–805 (1979)].
[CrossRef]

Subbaswamy, K. R.

G. D. Mahan and K. R. Subbaswamy, “Electro-optic contribution to Raman scattering from alkali halides,” Phys. Rev. B 33, 8657–8663 (1986).
[CrossRef]

van Sterkenburg, S. W. P.

S. W. P. van Sterkenburg, “Measurement of the electrostrictive tensor of eight alkali halides,” J. Phys. D 24, 1853–1857 (1991).
[CrossRef]

Vogt, H.

H. Vogt and H. Presting, “Hyper-Raman scattering from alkali halides,” Phys. Rev. B 31, 6731–6738 (1985).
[CrossRef]

Walda, G.

S. Haussühl and G. Walda, “Measurement of the absolute quadratic electro-optical effects in crystals. Example LiF and alpha-TlAl(SO4)2.12H2O,” Phys. Status Solidi A 5, K163–K165 (1971) (in German).
[CrossRef]

Zaitseva, M. P.

M. P. Zaitseva and A. A. Fotchenkov, “Experimental determination of some electrostriction coefficients for ammonium dihydrogen phosphate,” Kristallografiya 12, 716–717 (1967) (in Russian).

Zhang, Q. M.

Q. M. Zhang, W. Y. Pan, and L. E. Cross, “Laser interferometer for the study of piezoelectric and electrostrictive strains,” J. Appl. Phys. 63, 2492–2496 (1988).
[CrossRef]

Appl. Opt. (1)

Bull. Mater. Sci. (1)

M. L. N. Madhu Mohan and C. Haranadh, “The measurement of electrostriction coefficients of some XH2PO4/H3BO3 binaries by interferometric technique,” Bull. Mater. Sci. 18, 599–602 (1995).
[CrossRef]

Cryst. Res. Technol. (1)

R. Ledzion, K. Bondarczuk, P. Górski, and W. Kucharczyk, “Effect of deuteration on the quadratic electrooptic properties of KDP,” Cryst. Res. Technol. 34, 745–749 (1999).
[CrossRef]

Ferroelectr. Lett. Sect. (2)

M. J. Gunning, R. E. Raab, P. Górski, and W. Kucharczyk, “The quadratic electrooptic effect and estimation of antipolarization in ADP,” Ferroelectr. Lett. Sect. 24, 63–68 (1998).
[CrossRef]

M. J. Gunning, R. E. Raab, and W. Kucharczyk, “Interfero-metric measurements of electrostrictive coefficients of KDP and ADP in transmission,” Ferroelectr. Lett. Sect. 28, 93–102 (2001).
[CrossRef]

Helv. Phys. Acta (1)

E. Burnstein, A. A. Maradudin, E. Anastassakis, and A. Pinczuk, “Electric field induced infrared absorption and Raman scattering by optical phonons in centrosymmetric crystals,” Helv. Phys. Acta 41, 730–740 (1968).

IEEE J. Quantum Electron. (1)

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
[CrossRef]

J. Appl. Phys. (1)

Q. M. Zhang, W. Y. Pan, and L. E. Cross, “Laser interferometer for the study of piezoelectric and electrostrictive strains,” J. Appl. Phys. 63, 2492–2496 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. D (3)

P. Górski, M. Kin, and W. Kucharczyk, “On the application of a generalized form of Miller’s δ coefficient to nonlinear refractive indices in partially ionic crystals,” J. Phys. D 30, 1111–1114 (1997).
[CrossRef]

S. W. P. van Sterkenburg, “Measurement of the electrostrictive tensor of eight alkali halides,” J. Phys. D 24, 1853–1857 (1991).
[CrossRef]

J. Schreuer and S. Haussühl, “A re-investigation of the quadratic electrostriction of alkali halides of rocksalt type,” J. Phys. D 32, 1263–1270 (1999).
[CrossRef]

Kristallografiya (1)

M. P. Zaitseva and A. A. Fotchenkov, “Experimental determination of some electrostriction coefficients for ammonium dihydrogen phosphate,” Kristallografiya 12, 716–717 (1967) (in Russian).

Opt. Quantum Electron. (1)

W. Jamroz and J. Karniewicz, “The electro-optic Kerr effect in noncentrosymmetric KH2PO4 and KD2PO4 monocrystals,” Opt. Quantum Electron. 11, 23–27 (1979).
[CrossRef]

Phys. Rev. B (3)

G. D. Mahan and K. R. Subbaswamy, “Electro-optic contribution to Raman scattering from alkali halides,” Phys. Rev. B 33, 8657–8663 (1986).
[CrossRef]

H. Vogt and H. Presting, “Hyper-Raman scattering from alkali halides,” Phys. Rev. B 31, 6731–6738 (1985).
[CrossRef]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

W. L. Faust and C. H. Henry, “Mixing of visible and near-resonance infrared light in GaP,” Phys. Rev. Lett. 17, 1265–1268 (1966).
[CrossRef]

Phys. Status Solidi A (2)

S. Haussühl and G. Walda, “Measurement of the absolute quadratic electro-optical effects in crystals. Example LiF and alpha-TlAl(SO4)2.12H2O,” Phys. Status Solidi A 5, K163–K165 (1971) (in German).
[CrossRef]

P. Górski and W. Kucharczyk, “The quadratic electrooptic effect in KDP and ADP crystals,” Phys. Status Solidi A 103, K65–K67 (1987).
[CrossRef]

Physica B (2)

W. Kucharczyk, M. J. Gunning, R. E. Raab, and C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[CrossRef]

P. Górski, D. Mik, W. Kucharczyk, and R. E. Raab, “On the quadratic electro-optic effect in KDP,” Physica B 193, 17–24 (1994).
[CrossRef]

Proc. SPIE (1)

M. J. Gunning, R. Ledzion, P. Górski, and W. Kucharczyk, “Studies of the quadratic electro-optic effect in KDP-type crystals,” in International Conference on Solid State Crystals ’98: Single Crystal Growth, Characterization, and Applications, A. Majchrowski and J. Zielinski, eds., Proc. SPIE 3724, 249–255 (1999).
[CrossRef]

Sov. J. Quantum Electron. (1)

W. Jamroz, J. Karniewicz, and J. Stachowiak, “Nonlinear electrooptic effects in KDP and DKDP crystals,” Kvantovaya Elektron. 6, 1365–1369 (1979) [Sov. J. Quantum Electron. 6, 803–805 (1979)].
[CrossRef]

Trans. Faraday Soc. (1)

A. D. Buckingham, M. D. Bogaard, D. A. Dunmur, C. P. Hobbs, and B. J. Orr, “Kerr effect in some simple non-dipolar gases,” Trans. Faraday Soc. 66, 1548–1553 (1970).
[CrossRef]

Z. Kristallogr. (1)

L. Bohatý, “Dynamic method for measurement of electrostrictive and electrooptical effects. Tincalconite, Na2B4O5(OH)4.3H2O,” Z. Kristallogr. 158, 233–239 (1982) (in German).

Other (10)

R. Ledzion, K. Bondarczuk, P. Górski, and W. Kucharczyk, “Kerr constants of some mineral and silicone oils,” Kvant. Elektron. (Moscow) 28, 183–185 (1999) [Quantum Electron. 29, 739–741 (1999)].
[CrossRef]

G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 15th ed. (Longman, New York, 1986).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).

B. N. Grib, I. I. Kondilenko, and P. A. Korotkov, “Electrooptical deflection from potassium dihydrogen phosphate crystals and its use in frequency reforming in a neodymium laser,” Zh. Prikl. Spektrosk. 23, 804–810 (1975) [J. Appl. Spectrosc. 23, 1449–1455 (1975)].
[CrossRef]

V. E. Perfilova and A. S. Sonin, “Quadratic electrooptic effect in KDP group crystals,” Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 1136–1138 (1967) [Bull. Acad. Sci. USSR, Phys. Ser. (Engl. Transl.) 31, 1154–1157 (1967)].

K.-H. Hellwege and A. M. Hellwege, eds., Numerical Data and Functional Relationships in Science and Technology, Vol. 11 of Landolt-Börnstein, New Series, Group III (Springer, Berlin, 1979); see also Vol. 18 (1984).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

K. Hruška, “Measurement of electrostriction coefficients of crystals of ammonium dihydrogen phosphate (ADP),” Kristallografiya 10, 428–429 (1965) [Sov. Phys. Crystallogr. 10, 351–352 (1965)].

A. M. Sysoev, “Electrostriction, and dielectric and piezoelectric nonlinearity of a KDP crystal,” Fiz. Tverd. Tela (Leningrad) 34, 2874–2881 (1992) [Sov. Phys. Solid State 34, 1538–1542 (1992)].

M. J. Gunning, “Some experimental and theoretical studies in crystal optics,” Ph.D. dissertation (University of Natal, Scottsville, South Africa, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of the Michelson interferometer and the optical and electronic components used in the experiment.

Fig. 2
Fig. 2

Plots for z propagation of G as a function of sin2 α, where from Eqs. (2), (6), and (7), G=-2Δd/(no3LzEx2)=(gyyxx-gxxxx+ne2ryzx)sin2 α+gxxxx-2(no-na)no-3γzzxx, and α is the angle between the plane of the incident polarized beam and the x crystallographic axis of the crystal. The upper plot is for KDP in air of refractive index na, the lower plot for ADP in air.

Tables (3)

Tables Icon

Table 1 Dimensions Li,i=x, y, z in Millimeters, along the i Crystallographic Axis of the Crystals Studied

Tables Icon

Table 2 Values of no,ne, and ryzx for KDP and ADP at 21 °C and 632.8 nm

Tables Icon

Table 3 Quadratic Electro-Optic and Electrostrictive Coefficients of KDP and ADP at Room Temperature Measured in this Study in Units of 10-20 m2 V-2

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ΔBij=rijkEk+gijklEkEl+,
Δd=LΔn+(n-nm)ΔL,
Δnx=-12no3gxxxxEx2,
Δnz=-12ne3(gzzxx+no2ryzx2)Ex2,
ΔLy=γyyxxLyEx2.
Δnz(α)=-12no3[gxxxx cos2 α+(gyyxx+ne2ryzx2)sin2 α]Ex2,
ΔLz=γzzxxLzEx2.
ΔBij=gijklEkEl=(g¯ijkl+pijmnγmnkl)EkEl+qijklσkl.
g¯ijkl=g¯ijklion+g¯ijklelec.
Cijkl=g¯ijklion/g¯ijklelec.
g¯ijklelec=-12ii-1jj-1χijkl(3),

Metrics