Abstract

Amorphous silicon nitride microcavities were fabricated by use of distributed Bragg reflectors. The distributed Bragg reflectors were fabricated with alternating layers of quarter-wavelength-thick hydrogenated amorphous silicon nitride and amorphous silicon oxide. The spectral peak of the bulk amorphous silicon nitride photoluminescence spectrum was chosen as the microcavity resonance wavelength. The amorphous silicon nitride microcavity enhances the photoluminescence amplitude and reduces the photoluminescence linewidth with respect to the bulk amorphous silicon nitride. This narrowing and enhancement of the photoluminescence can be understood by the redistribution of the density of optical modes owing to the presence of the microcavity. The microcavity narrowing and enhancement of luminescence in hydrogenated amorphous silicon nitride opens up a variety of possibilities for optoelectronic applications such as resonant-cavity-enhanced light-emitting diodes and color flat-panel displays.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluwer Academic, Dordrecht, The Netherlands, 1996).
  2. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  3. D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113–118 (1998).
    [CrossRef]
  4. H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, Boca Raton, Fla., 1995).
  5. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
    [CrossRef]
  6. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I. Basic concepts and analytical trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612–1631 (1998).
    [CrossRef]
  7. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II. Selected exact simulations and role of photon recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632–1643 (1998).
    [CrossRef]
  8. R. E. Slusher and C. Weisbuch, “Optical microcavities in condensed matter systems,” Solid State Commun. 92, 149–158 (1994).
    [CrossRef]
  9. H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron. 24, S245–S272 (1992).
    [CrossRef]
  10. Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
    [CrossRef] [PubMed]
  11. J. V. Sandusky and S. R. J. Brueck, “Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure,” Appl. Phys. Lett. 69, 3993–3995 (1996).
    [CrossRef]
  12. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [CrossRef]
  13. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
    [CrossRef] [PubMed]
  14. E. F. Schubert, Y.-H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
    [CrossRef]
  15. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  16. P. W. Milloni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
    [CrossRef]
  17. F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
    [CrossRef] [PubMed]
  18. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
    [CrossRef]
  19. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures,” Phys. Rev. A 44, 669–681 (1991).
    [CrossRef]
  20. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13, 645–669 (1998).
    [CrossRef]
  21. Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
    [CrossRef] [PubMed]
  22. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
    [CrossRef] [PubMed]
  23. S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437–14447 (1995).
    [CrossRef]
  24. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
    [CrossRef]
  25. D. J. Lockwood, “Optical properties of porous silicon,” Solid State Commun. 92, 101–112 (1994).
    [CrossRef]
  26. D. J. Wolford, B. A. Scoot, J. A. Reimer, and J. A. Bradley, “Efficient visible luminescence from hydrogenated amorphous silicon,” Physica B 117–118, 920–922 (1983).
    [CrossRef]
  27. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120–6123 (1996).
    [CrossRef]
  28. A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273–277 (1996).
    [CrossRef]
  29. A. Serpengüzel, A. Aydinli, and A. Bek, “Enhancement and inhibition of photoluminescence in hydrogenated amorphous silicon nitride microcavities,” Opt. Express 1, 108–113 (1997).
    [CrossRef]
  30. A. Serpengüzel, A. Aydinli, and A. Bek, “Alteration of spontaneous emission in hydrogenated amorphous silicon ni-tride microcavities,” J. Non-Cryst. Solids 227–230, 1142–1145 (1998).
    [CrossRef]
  31. A. Serpengüzel, A. Aydinli, A. Bek, and M. Güre, “Visible photoluminescence from planar amorphous silicon nitride microcavities,” J. Opt. Soc. Am. B 15, 2706–2711 (1998).
    [CrossRef]
  32. M. H. Brodsky, “Quantum well model of the hydrogenated amorphous silicon,” Solid State Commun. 36, 55–59 (1980).
    [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics (Cambridge University, Cambridge, 1998), p. 51.
  34. R. Fisher, “Luminescence in amorphous semiconductors,” in Amorphous Semiconductors, M. H. Brodsky, ed. (Springer-Verlag, Berlin, 1985), pp. 159–187.

1998 (6)

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I. Basic concepts and analytical trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II. Selected exact simulations and role of photon recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113–118 (1998).
[CrossRef]

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13, 645–669 (1998).
[CrossRef]

A. Serpengüzel, A. Aydinli, and A. Bek, “Alteration of spontaneous emission in hydrogenated amorphous silicon ni-tride microcavities,” J. Non-Cryst. Solids 227–230, 1142–1145 (1998).
[CrossRef]

A. Serpengüzel, A. Aydinli, A. Bek, and M. Güre, “Visible photoluminescence from planar amorphous silicon nitride microcavities,” J. Opt. Soc. Am. B 15, 2706–2711 (1998).
[CrossRef]

1997 (1)

1996 (3)

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120–6123 (1996).
[CrossRef]

A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273–277 (1996).
[CrossRef]

J. V. Sandusky and S. R. J. Brueck, “Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure,” Appl. Phys. Lett. 69, 3993–3995 (1996).
[CrossRef]

1995 (3)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437–14447 (1995).
[CrossRef]

1994 (2)

D. J. Lockwood, “Optical properties of porous silicon,” Solid State Commun. 92, 101–112 (1994).
[CrossRef]

R. E. Slusher and C. Weisbuch, “Optical microcavities in condensed matter systems,” Solid State Commun. 92, 149–158 (1994).
[CrossRef]

1992 (4)

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron. 24, S245–S272 (1992).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

E. F. Schubert, Y.-H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef] [PubMed]

1991 (2)

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
[CrossRef] [PubMed]

1990 (3)

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[CrossRef]

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef] [PubMed]

T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
[CrossRef]

1987 (1)

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

1983 (1)

D. J. Wolford, B. A. Scoot, J. A. Reimer, and J. A. Bradley, “Efficient visible luminescence from hydrogenated amorphous silicon,” Physica B 117–118, 920–922 (1983).
[CrossRef]

1980 (1)

M. H. Brodsky, “Quantum well model of the hydrogenated amorphous silicon,” Solid State Commun. 36, 55–59 (1980).
[CrossRef]

1973 (1)

P. W. Milloni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Agarwal, A. M.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120–6123 (1996).
[CrossRef]

Anan, T.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron. 24, S245–S272 (1992).
[CrossRef]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[CrossRef]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef] [PubMed]

Aydinli, A.

A. Serpengüzel, A. Aydinli, A. Bek, and M. Güre, “Visible photoluminescence from planar amorphous silicon nitride microcavities,” J. Opt. Soc. Am. B 15, 2706–2711 (1998).
[CrossRef]

A. Serpengüzel, A. Aydinli, and A. Bek, “Alteration of spontaneous emission in hydrogenated amorphous silicon ni-tride microcavities,” J. Non-Cryst. Solids 227–230, 1142–1145 (1998).
[CrossRef]

A. Serpengüzel, A. Aydinli, and A. Bek, “Enhancement and inhibition of photoluminescence in hydrogenated amorphous silicon nitride microcavities,” Opt. Express 1, 108–113 (1997).
[CrossRef]

A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273–277 (1996).
[CrossRef]

Bek, A.

Benisty, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II. Selected exact simulations and role of photon recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I. Basic concepts and analytical trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

Bi, W. G.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

Björk, G.

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437–14447 (1995).
[CrossRef]

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
[CrossRef] [PubMed]

Black, M. R.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120–6123 (1996).
[CrossRef]

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113–118 (1998).
[CrossRef]

Bradley, J. A.

D. J. Wolford, B. A. Scoot, J. A. Reimer, and J. A. Bradley, “Efficient visible luminescence from hydrogenated amorphous silicon,” Physica B 117–118, 920–922 (1983).
[CrossRef]

Brodsky, M. H.

M. H. Brodsky, “Quantum well model of the hydrogenated amorphous silicon,” Solid State Commun. 36, 55–59 (1980).
[CrossRef]

Brorson, S. D.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron. 24, S245–S272 (1992).
[CrossRef]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[CrossRef]

Brueck, S. R. J.

J. V. Sandusky and S. R. J. Brueck, “Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure,” Appl. Phys. Lett. 69, 3993–3995 (1996).
[CrossRef]

Canham, T.

T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
[CrossRef]

Cao, H.

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437–14447 (1995).
[CrossRef]

Carmichael, H. J.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef] [PubMed]

Cho, A. Y.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Chu, D. Y.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

De Martini, F.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

De Neve, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I. Basic concepts and analytical trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II. Selected exact simulations and role of photon recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

Duan, X.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120–6123 (1996).
[CrossRef]

Fisher, T. A.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13, 645–669 (1998).
[CrossRef]

Foresi, J. S.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120–6123 (1996).
[CrossRef]

Gauthier, J.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef] [PubMed]

Güre, M.

Ho, S. T.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

Igeta, K.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Innocenti, G.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

Ippen, E. P.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron. 24, S245–S272 (1992).
[CrossRef]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[CrossRef]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef] [PubMed]

Jacobowitz, G. R.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

Jacobson, J.

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437–14447 (1995).
[CrossRef]

Kimerling, L. C.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120–6123 (1996).
[CrossRef]

Knight, P. L.

P. W. Milloni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Liao, L.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120–6123 (1996).
[CrossRef]

Lidzey, D. G.

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113–118 (1998).
[CrossRef]

Lockwood, D. J.

D. J. Lockwood, “Optical properties of porous silicon,” Solid State Commun. 92, 101–112 (1994).
[CrossRef]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Machida, S.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
[CrossRef] [PubMed]

Martin, S. J.

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113–118 (1998).
[CrossRef]

Mataloni, P.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Milloni, P. W.

P. W. Milloni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

Morin, S. E.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef] [PubMed]

Mossberg, T. W.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef] [PubMed]

Nambu, Y.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron. 24, S245–S272 (1992).
[CrossRef]

Nishi, K.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron. 24, S245–S272 (1992).
[CrossRef]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[CrossRef]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef] [PubMed]

Pate, M. A.

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113–118 (1998).
[CrossRef]

Pau, S.

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437–14447 (1995).
[CrossRef]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Reimer, J. A.

D. J. Wolford, B. A. Scoot, J. A. Reimer, and J. A. Bradley, “Efficient visible luminescence from hydrogenated amorphous silicon,” Physica B 117–118, 920–922 (1983).
[CrossRef]

Sandusky, J. V.

J. V. Sandusky and S. R. J. Brueck, “Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure,” Appl. Phys. Lett. 69, 3993–3995 (1996).
[CrossRef]

Schubert, E. F.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Scoot, B. A.

D. J. Wolford, B. A. Scoot, J. A. Reimer, and J. A. Bradley, “Efficient visible luminescence from hydrogenated amorphous silicon,” Physica B 117–118, 920–922 (1983).
[CrossRef]

Serpengüzel, A.

A. Serpengüzel, A. Aydinli, A. Bek, and M. Güre, “Visible photoluminescence from planar amorphous silicon nitride microcavities,” J. Opt. Soc. Am. B 15, 2706–2711 (1998).
[CrossRef]

A. Serpengüzel, A. Aydinli, and A. Bek, “Alteration of spontaneous emission in hydrogenated amorphous silicon ni-tride microcavities,” J. Non-Cryst. Solids 227–230, 1142–1145 (1998).
[CrossRef]

A. Serpengüzel, A. Aydinli, and A. Bek, “Enhancement and inhibition of photoluminescence in hydrogenated amorphous silicon nitride microcavities,” Opt. Express 1, 108–113 (1997).
[CrossRef]

A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273–277 (1996).
[CrossRef]

Skolnick, M. S.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13, 645–669 (1998).
[CrossRef]

Slusher, R. E.

R. E. Slusher and C. Weisbuch, “Optical microcavities in condensed matter systems,” Solid State Commun. 92, 149–158 (1994).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Strite, S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

Suzuki, M.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron. 24, S245–S272 (1992).
[CrossRef]

Tiberio, R. C.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

Tu, C. W.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

Tu, L. W.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Ünlü, M. S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

Vardar, D.

A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273–277 (1996).
[CrossRef]

Wang, Y.-H.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Weisbuch, C.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II. Selected exact simulations and role of photon recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I. Basic concepts and analytical trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

R. E. Slusher and C. Weisbuch, “Optical microcavities in condensed matter systems,” Solid State Commun. 92, 149–158 (1994).
[CrossRef]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef] [PubMed]

Whittaker, D. M.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13, 645–669 (1998).
[CrossRef]

Wolford, D. J.

D. J. Wolford, B. A. Scoot, J. A. Reimer, and J. A. Bradley, “Efficient visible luminescence from hydrogenated amorphous silicon,” Physica B 117–118, 920–922 (1983).
[CrossRef]

Wu, Q.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef] [PubMed]

Wu, S. L.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

Yamada, H.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[CrossRef]

Yamamoto, Y.

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437–14447 (1995).
[CrossRef]

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
[CrossRef] [PubMed]

Yokoyama, H.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron. 24, S245–S272 (1992).
[CrossRef]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[CrossRef]

Zhang, J. P.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

Zhu, Y.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef] [PubMed]

Zydzik, G. J.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Appl. Phys. Lett. (5)

J. V. Sandusky and S. R. J. Brueck, “Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure,” Appl. Phys. Lett. 69, 3993–3995 (1996).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

E. F. Schubert, Y.-H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[CrossRef]

T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113–118 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I. Basic concepts and analytical trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II. Selected exact simulations and role of photon recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

J. Appl. Phys. (2)

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120–6123 (1996).
[CrossRef]

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Serpengüzel, A. Aydinli, and A. Bek, “Alteration of spontaneous emission in hydrogenated amorphous silicon ni-tride microcavities,” J. Non-Cryst. Solids 227–230, 1142–1145 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. W. Milloni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron. 24, S245–S272 (1992).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (2)

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (1)

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437–14447 (1995).
[CrossRef]

Phys. Rev. Lett. (4)

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[CrossRef] [PubMed]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[CrossRef] [PubMed]

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

Physica B (1)

D. J. Wolford, B. A. Scoot, J. A. Reimer, and J. A. Bradley, “Efficient visible luminescence from hydrogenated amorphous silicon,” Physica B 117–118, 920–922 (1983).
[CrossRef]

Semicond. Sci. Technol. (1)

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13, 645–669 (1998).
[CrossRef]

Solid State Commun. (4)

R. E. Slusher and C. Weisbuch, “Optical microcavities in condensed matter systems,” Solid State Commun. 92, 149–158 (1994).
[CrossRef]

M. H. Brodsky, “Quantum well model of the hydrogenated amorphous silicon,” Solid State Commun. 36, 55–59 (1980).
[CrossRef]

A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273–277 (1996).
[CrossRef]

D. J. Lockwood, “Optical properties of porous silicon,” Solid State Commun. 92, 101–112 (1994).
[CrossRef]

Other (5)

M. Born and E. Wolf, Principles of Optics (Cambridge University, Cambridge, 1998), p. 51.

R. Fisher, “Luminescence in amorphous semiconductors,” in Amorphous Semiconductors, M. H. Brodsky, ed. (Springer-Verlag, Berlin, 1985), pp. 159–187.

H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, Boca Raton, Fla., 1995).

J. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluwer Academic, Dordrecht, The Netherlands, 1996).

R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic and (b) SEM of the a-SiNx:H microcavity.

Fig. 2
Fig. 2

(a) Measured and (b) calculated reflectance spectra of the a-SiNx:H microcavity.

Fig. 3
Fig. 3

Measured PL spectra of a-SiNx:H microcavity.

Fig. 4
Fig. 4

Bulk a-SiNx:H PL spectra.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r1r2=nsnsi nonn2q-1nsna nonn2q-1nsnsi nonn2q+1nsna nonn2q+1,
Q=2π1+nΔnln(1/r1r2),
Δλ=λQ,

Metrics