Abstract

The mechanism of resonant diffraction in solid-state lasers is theoretically investigated and experimentally isolated. It consists in a variation of the diffraction losses of a laser with the laser frequency, which is induced by a frequency-dependent saturation lenslike effect that occurs in the active medium. It is shown that this mechanism can lead to peculiar variations in the laser slope efficiency. The diffracted-light spectroscopy technique permits these variations to be connected with the calculated saturation lenslike effects in a diode end-pumped Er,Yb:glass laser.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Brauch, A. Giesen, M. Karszewski, Chr. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20, 713–715 (1995).
    [CrossRef] [PubMed]
  2. S. Taccheo, S. Longhi, L. Pallaro, P. Laporta, C. Svelto, and E. Brava, “Frequency stabilization to a molecular line of a diode-pumped Er–Yb laser at 1533-nm wavelength,” Opt. Lett. 20, 2420–2422 (1995).
    [CrossRef]
  3. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996).
  4. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
    [CrossRef]
  5. B. Neuenschwander, R. Weber, and H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31, 1082–1087 (1995).
    [CrossRef]
  6. S. Longhi, “Theory of transverse modes in end-pumped microchip lasers,” J. Opt. Soc. Am. B 11, 1098–1107 (1994).
    [CrossRef]
  7. A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, “Guiding effects in Nd:YVO4 microchip lasers operating well above threshold,” IEEE J. Quantum Electron. 35, 675–681 (1999).
    [CrossRef]
  8. E. Desurvire, “Study of the complex atomic susceptibility of erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1517–1527 (1990).
    [CrossRef]
  9. A. Yariv, Quantum Electronics (Wiley, New York, 1988).
  10. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988).
    [CrossRef]
  11. J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
    [CrossRef]
  12. A. Le Floch, R. Le Naour, J. M. Lenormand, and J. P. Taché, “Nonlinear frequency-dependent diffraction effect in intracavity resonance asymmetries,” Phys. Rev. Lett. 45, 544–547 (1980).
    [CrossRef]
  13. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef] [PubMed]
  14. J.-P. Taché, A. Le Floch, and R. Le Naour, “Different critical geometries for half-symmetric laser resonators,” Opt. Commun. 71, 179–183 (1989).
    [CrossRef]
  15. J.-P. Taché, A. Le Floch, and R. Le Naour, “Lamb dip asymmetry in lasers with plane-parallel resonators,” Appl. Opt. 25, 2934–2938 (1986).
    [CrossRef] [PubMed]
  16. J.-P. Taché, “Experimental investigation of diffraction losses in a laser resonator by means of the diffracted light,” Opt. Commun. 49, 340–344 (1984).
    [CrossRef]
  17. P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modelling of the erbium–ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993).
    [CrossRef]
  18. M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, “Diffraction losses reduction in multi-apertured non-Hermitian laser resonators,” Phys. Rev. A 55, 781–786 (1997).
    [CrossRef]
  19. I. Moshe and S. Jackel, “Correction of birefringence and thermal lensing in nonreciprocal resonators by use of a dynamic imaging mirror,” Appl. Opt. 39, 4313–4319 (2000).
    [CrossRef]
  20. M. Schmid, Th. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. Opt. Soc. Am. B 17, 1398–1404 (2000).
    [CrossRef]

2000

1999

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, “Guiding effects in Nd:YVO4 microchip lasers operating well above threshold,” IEEE J. Quantum Electron. 35, 675–681 (1999).
[CrossRef]

1997

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, “Diffraction losses reduction in multi-apertured non-Hermitian laser resonators,” Phys. Rev. A 55, 781–786 (1997).
[CrossRef]

1995

1994

1993

P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modelling of the erbium–ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993).
[CrossRef]

1992

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

1990

E. Desurvire, “Study of the complex atomic susceptibility of erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1517–1527 (1990).
[CrossRef]

1989

J.-P. Taché, A. Le Floch, and R. Le Naour, “Different critical geometries for half-symmetric laser resonators,” Opt. Commun. 71, 179–183 (1989).
[CrossRef]

1988

1986

1984

J.-P. Taché, “Experimental investigation of diffraction losses in a laser resonator by means of the diffracted light,” Opt. Commun. 49, 340–344 (1984).
[CrossRef]

1980

A. Le Floch, R. Le Naour, J. M. Lenormand, and J. P. Taché, “Nonlinear frequency-dependent diffraction effect in intracavity resonance asymmetries,” Phys. Rev. Lett. 45, 544–547 (1980).
[CrossRef]

1966

Brauch, U.

Brava, E.

Bretenaker, F.

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, “Diffraction losses reduction in multi-apertured non-Hermitian laser resonators,” Phys. Rev. A 55, 781–786 (1997).
[CrossRef]

Brunel, M.

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, “Diffraction losses reduction in multi-apertured non-Hermitian laser resonators,” Phys. Rev. A 55, 781–786 (1997).
[CrossRef]

Conroy, R. S.

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, “Guiding effects in Nd:YVO4 microchip lasers operating well above threshold,” IEEE J. Quantum Electron. 35, 675–681 (1999).
[CrossRef]

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

Desurvire, E.

E. Desurvire, “Study of the complex atomic susceptibility of erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1517–1527 (1990).
[CrossRef]

Friel, G. J.

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, “Guiding effects in Nd:YVO4 microchip lasers operating well above threshold,” IEEE J. Quantum Electron. 35, 675–681 (1999).
[CrossRef]

Giesen, A.

Graf, Th.

Jackel, S.

Karszewski, M.

Kemp, A. J.

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, “Guiding effects in Nd:YVO4 microchip lasers operating well above threshold,” IEEE J. Quantum Electron. 35, 675–681 (1999).
[CrossRef]

Kogelnik, H.

Laporta, P.

Le Floch, A.

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, “Diffraction losses reduction in multi-apertured non-Hermitian laser resonators,” Phys. Rev. A 55, 781–786 (1997).
[CrossRef]

J.-P. Taché, A. Le Floch, and R. Le Naour, “Different critical geometries for half-symmetric laser resonators,” Opt. Commun. 71, 179–183 (1989).
[CrossRef]

J.-P. Taché, A. Le Floch, and R. Le Naour, “Lamb dip asymmetry in lasers with plane-parallel resonators,” Appl. Opt. 25, 2934–2938 (1986).
[CrossRef] [PubMed]

A. Le Floch, R. Le Naour, J. M. Lenormand, and J. P. Taché, “Nonlinear frequency-dependent diffraction effect in intracavity resonance asymmetries,” Phys. Rev. Lett. 45, 544–547 (1980).
[CrossRef]

Le Naour, R.

J.-P. Taché, A. Le Floch, and R. Le Naour, “Different critical geometries for half-symmetric laser resonators,” Opt. Commun. 71, 179–183 (1989).
[CrossRef]

J.-P. Taché, A. Le Floch, and R. Le Naour, “Lamb dip asymmetry in lasers with plane-parallel resonators,” Appl. Opt. 25, 2934–2938 (1986).
[CrossRef] [PubMed]

A. Le Floch, R. Le Naour, J. M. Lenormand, and J. P. Taché, “Nonlinear frequency-dependent diffraction effect in intracavity resonance asymmetries,” Phys. Rev. Lett. 45, 544–547 (1980).
[CrossRef]

Lenormand, J. M.

A. Le Floch, R. Le Naour, J. M. Lenormand, and J. P. Taché, “Nonlinear frequency-dependent diffraction effect in intracavity resonance asymmetries,” Phys. Rev. Lett. 45, 544–547 (1980).
[CrossRef]

Li, T.

Longhi, S.

Moshe, I.

Neuenschwander, B.

B. Neuenschwander, R. Weber, and H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31, 1082–1087 (1995).
[CrossRef]

Pallaro, L.

Risk, W. P.

Ropars, G.

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, “Diffraction losses reduction in multi-apertured non-Hermitian laser resonators,” Phys. Rev. A 55, 781–786 (1997).
[CrossRef]

Schmid, M.

Sinclair, B. D.

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, “Guiding effects in Nd:YVO4 microchip lasers operating well above threshold,” IEEE J. Quantum Electron. 35, 675–681 (1999).
[CrossRef]

Srivastava, A. K.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

Stewen, Chr.

Sulhoff, J. W.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

Sun, Y.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

Svelto, C.

Svelto, O.

P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modelling of the erbium–ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993).
[CrossRef]

Taccheo, S.

Taché, J. P.

A. Le Floch, R. Le Naour, J. M. Lenormand, and J. P. Taché, “Nonlinear frequency-dependent diffraction effect in intracavity resonance asymmetries,” Phys. Rev. Lett. 45, 544–547 (1980).
[CrossRef]

Taché, J.-P.

J.-P. Taché, A. Le Floch, and R. Le Naour, “Different critical geometries for half-symmetric laser resonators,” Opt. Commun. 71, 179–183 (1989).
[CrossRef]

J.-P. Taché, A. Le Floch, and R. Le Naour, “Lamb dip asymmetry in lasers with plane-parallel resonators,” Appl. Opt. 25, 2934–2938 (1986).
[CrossRef] [PubMed]

J.-P. Taché, “Experimental investigation of diffraction losses in a laser resonator by means of the diffracted light,” Opt. Commun. 49, 340–344 (1984).
[CrossRef]

Voss, A.

Weber, H. P.

M. Schmid, Th. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. Opt. Soc. Am. B 17, 1398–1404 (2000).
[CrossRef]

B. Neuenschwander, R. Weber, and H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31, 1082–1087 (1995).
[CrossRef]

Weber, R.

B. Neuenschwander, R. Weber, and H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31, 1082–1087 (1995).
[CrossRef]

Wolf, C.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

Zyskind, J. L.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

B. Neuenschwander, R. Weber, and H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31, 1082–1087 (1995).
[CrossRef]

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, “Guiding effects in Nd:YVO4 microchip lasers operating well above threshold,” IEEE J. Quantum Electron. 35, 675–681 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

J. Lightwave Technol.

E. Desurvire, “Study of the complex atomic susceptibility of erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1517–1527 (1990).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

J.-P. Taché, A. Le Floch, and R. Le Naour, “Different critical geometries for half-symmetric laser resonators,” Opt. Commun. 71, 179–183 (1989).
[CrossRef]

J.-P. Taché, “Experimental investigation of diffraction losses in a laser resonator by means of the diffracted light,” Opt. Commun. 49, 340–344 (1984).
[CrossRef]

P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modelling of the erbium–ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, “Diffraction losses reduction in multi-apertured non-Hermitian laser resonators,” Phys. Rev. A 55, 781–786 (1997).
[CrossRef]

Phys. Rev. Lett.

A. Le Floch, R. Le Naour, J. M. Lenormand, and J. P. Taché, “Nonlinear frequency-dependent diffraction effect in intracavity resonance asymmetries,” Phys. Rev. Lett. 45, 544–547 (1980).
[CrossRef]

Other

A. Yariv, Quantum Electronics (Wiley, New York, 1988).

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup:  M1, M2, mirrors; D1,D2, photodiodes; F, dichroic filter; L, lens.

Fig. 2
Fig. 2

Calculated spectral profiles of (a) the unsaturated gain coefficient and (b) its associated index variation; ρ, population-inversion ratio. Arrows, evolution of the curves when ρ is increased.

Fig. 3
Fig. 3

Calculated radial profiles of (a) the saturated gain coefficient and (b) its associated index variation for a pumping rate η=2 at 1534, 1535, and 1536 nm. w is the mode radius in the active medium.

Fig. 4
Fig. 4

Experimental (a) output power and (b) diffracted intensity versus pumping rate. The solid curves are guides for the eye. (c), (d) Corresponding theoretical results obtained with α(1534)=9×10-25cm2s,α(1535)=0 cm2s, α(1536)=-9×10-25 cm2 s, and β=-170×10-25 cm2 s.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g(λ)=NEρρ+1[σa(λ)+σe(λ)]-σa(λ),
Δn(λ)=12π2 p.v.0g(λ)(λ/λ)2-1dλ,
p(λ)=p0[1+α(λ)I(λ)+βIp],
Id(λ)=θI(λ)pϕp0+α(λ)I(λ)+βIp,

Metrics