Abstract

Er3+-doped and Er3+/Yb3+-codoped Na2O·Ca3Al2Ge3O12 glasses that are suitable for use in optical waveguide devices have been fabricated and characterized. The density, the refractive indices, the optical absorption, the Judd–Ofelt parameters, and the spontaneous transition probabilities of the glasses have been measured and calculated. Intense 1.533-µm fluorescence was observed in these glass systems under 798- and 973-nm excitation, and the quantum efficiency was ∼100%. Efficient upconversion luminescence at 525, 547, and 659 nm at room temperature was also observed. At a pump intensity of 1220 W/cm2 at 798 nm, frequency upconversion efficiencies of 0.98×10-2 and 1.03×10-2 were obtained for green and red emissions, respectively. The standardized value for green emission is higher than those reported for lead germanate, lead tellurium germanate, silicate, and phosphate glasses. Under 973-nm excitation, the enhancement of 1533-nm emission and visible upconversion fluorescence in Er3+/Yb3+-codoped glasses are confirmed, and the sensitizing is due to efficient energy transfer from Yb3+ to Er3+.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
    [CrossRef]
  2. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
    [CrossRef]
  3. G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er: Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
    [CrossRef]
  4. K. Hattori, T. Kitagawa, M. Oguma, H. Okazaki, and Y. Ohmori, “Optical amplification in Er3+-doped P2O5-SiO2 planar waveguides,” J. Appl. Phys. 80, 5301–5308 (1996).
    [CrossRef]
  5. H. Yamada and K. Kojima, “Upconversion fluorescence in Er3+-doped Na2O-GeO2 glasses,” J. Non-Cryst. Solids 259, 57–62 (1999).
    [CrossRef]
  6. T. Luo, S. Jiang, G. N. Conti, S. Honkanen, S. B. Mendes, and N. Peyghambarian, “Ag+–Na+ exchanged channel waveguides in germanate glass,” Electron. Lett. 34, 2239–2240 (1998).
    [CrossRef]
  7. F. Bucholtz, K. J. Ewing, M. Putnam, and C. G. Askins, “Photoluminescence of Bragg grating in germanosilicate,” Electron. Lett. 32, 1130–1131 (1996).
    [CrossRef]
  8. H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura, “Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses,” J. Appl. Phys. 83, 19–27 (1998).
    [CrossRef]
  9. A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications, (Artech House, Boston, Mass., 1993), pp. 1–5.
  10. E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-doped silica glass optical waveguide amplifier,” IEEE J. Quantum Electron. 32, 1680–1684 (1996).
    [CrossRef]
  11. M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85, 29–37 (1999).
    [CrossRef]
  12. X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
    [CrossRef]
  13. T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
    [CrossRef]
  14. T. Miyakama and D. L. Dexter, “Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb3+-sensitized crystals,” Phys. Rev. B 1, 70–80 (1970).
    [CrossRef]
  15. D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
    [CrossRef]
  16. M. P. Hehlen, N. J. Cockroft, T. P. Gosnell and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
    [CrossRef]
  17. X. Zhang, J. Yuan, X. Liu, J. P. Jouart, and G. Mary, “Red laser induced upconversion luminescence in Er-doped calcium aluminum germanate garnet,” J. Appl. Phys. 82, 3987–3991 (1997).
    [CrossRef]
  18. C. V. Poulsen, J. Hubner, T. Rasmussen, L. U. A. Andersen, and M. Kristensen, “Characterisation of dispersion properties in planar waveguides using UV-induced Bragg grating,” Electron. Lett. 31, 1437–1438 (1995).
    [CrossRef]
  19. C. Montero, C. Gomez-Reino, and J. L. Brebner, “Planar Bragg gratings made by excimer laser modification of ion-exchanged waveguide,” Opt. Lett. 24, 1487–1489 (1999).
    [CrossRef]
  20. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  21. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  22. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
    [CrossRef]
  23. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
    [CrossRef]
  24. C. K. Jorgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
    [CrossRef]
  25. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
    [CrossRef]
  26. Z. Pun, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
    [CrossRef]
  27. R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett. 23, 32–33 (1987).
    [CrossRef]
  28. S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000).
    [CrossRef]

2000 (1)

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000).
[CrossRef]

1999 (3)

C. Montero, C. Gomez-Reino, and J. L. Brebner, “Planar Bragg gratings made by excimer laser modification of ion-exchanged waveguide,” Opt. Lett. 24, 1487–1489 (1999).
[CrossRef]

H. Yamada and K. Kojima, “Upconversion fluorescence in Er3+-doped Na2O-GeO2 glasses,” J. Non-Cryst. Solids 259, 57–62 (1999).
[CrossRef]

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85, 29–37 (1999).
[CrossRef]

1998 (2)

T. Luo, S. Jiang, G. N. Conti, S. Honkanen, S. B. Mendes, and N. Peyghambarian, “Ag+–Na+ exchanged channel waveguides in germanate glass,” Electron. Lett. 34, 2239–2240 (1998).
[CrossRef]

H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura, “Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses,” J. Appl. Phys. 83, 19–27 (1998).
[CrossRef]

1997 (2)

M. P. Hehlen, N. J. Cockroft, T. P. Gosnell and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

X. Zhang, J. Yuan, X. Liu, J. P. Jouart, and G. Mary, “Red laser induced upconversion luminescence in Er-doped calcium aluminum germanate garnet,” J. Appl. Phys. 82, 3987–3991 (1997).
[CrossRef]

1996 (4)

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-doped silica glass optical waveguide amplifier,” IEEE J. Quantum Electron. 32, 1680–1684 (1996).
[CrossRef]

F. Bucholtz, K. J. Ewing, M. Putnam, and C. G. Askins, “Photoluminescence of Bragg grating in germanosilicate,” Electron. Lett. 32, 1130–1131 (1996).
[CrossRef]

K. Hattori, T. Kitagawa, M. Oguma, H. Okazaki, and Y. Ohmori, “Optical amplification in Er3+-doped P2O5-SiO2 planar waveguides,” J. Appl. Phys. 80, 5301–5308 (1996).
[CrossRef]

Z. Pun, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

1995 (4)

G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er: Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
[CrossRef]

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

C. V. Poulsen, J. Hubner, T. Rasmussen, L. U. A. Andersen, and M. Kristensen, “Characterisation of dispersion properties in planar waveguides using UV-induced Bragg grating,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

1993 (1)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

1991 (1)

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

1987 (2)

R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett. 23, 32–33 (1987).
[CrossRef]

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

1983 (1)

C. K. Jorgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

1970 (1)

T. Miyakama and D. L. Dexter, “Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb3+-sensitized crystals,” Phys. Rev. B 1, 70–80 (1970).
[CrossRef]

1968 (2)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

1967 (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Andersen, L. U. A.

C. V. Poulsen, J. Hubner, T. Rasmussen, L. U. A. Andersen, and M. Kristensen, “Characterisation of dispersion properties in planar waveguides using UV-induced Bragg grating,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

Askins, C. G.

F. Bucholtz, K. J. Ewing, M. Putnam, and C. G. Askins, “Photoluminescence of Bragg grating in germanosilicate,” Electron. Lett. 32, 1130–1131 (1996).
[CrossRef]

Bass, M.

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

Beguin, A.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Brebner, J. L.

Brierley, M. C.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Brocklesby, W. S.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Brooks, C. L.

G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er: Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
[CrossRef]

Bruce, A. J.

M. P. Hehlen, N. J. Cockroft, T. P. Gosnell and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Bucholtz, F.

F. Bucholtz, K. J. Ewing, M. Putnam, and C. G. Askins, “Photoluminescence of Bragg grating in germanosilicate,” Electron. Lett. 32, 1130–1131 (1996).
[CrossRef]

Camy, P.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Chai, B. H. T.

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

Chung, P. S.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000).
[CrossRef]

Cockroft, N. J.

M. P. Hehlen, N. J. Cockroft, T. P. Gosnell and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Conti, G. N.

T. Luo, S. Jiang, G. N. Conti, S. Honkanen, S. B. Mendes, and N. Peyghambarian, “Ag+–Na+ exchanged channel waveguides in germanate glass,” Electron. Lett. 34, 2239–2240 (1998).
[CrossRef]

Dexter, D. L.

T. Miyakama and D. L. Dexter, “Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb3+-sensitized crystals,” Phys. Rev. B 1, 70–80 (1970).
[CrossRef]

Drexhage, M. G.

R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett. 23, 32–33 (1987).
[CrossRef]

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

Dyer, K.

Z. Pun, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Ewing, K. J.

F. Bucholtz, K. J. Ewing, M. Putnam, and C. G. Askins, “Photoluminescence of Bragg grating in germanosilicate,” Electron. Lett. 32, 1130–1131 (1996).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Gomez-Reino, C.

Gosnell, T. P.

M. P. Hehlen, N. J. Cockroft, T. P. Gosnell and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Hattori, K.

K. Hattori, T. Kitagawa, M. Oguma, H. Okazaki, and Y. Ohmori, “Optical amplification in Er3+-doped P2O5-SiO2 planar waveguides,” J. Appl. Phys. 80, 5301–5308 (1996).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, N. J. Cockroft, T. P. Gosnell and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Hempstead, M.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Higuchi, H.

H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura, “Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses,” J. Appl. Phys. 83, 19–27 (1998).
[CrossRef]

Hong, P.

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

Honkanen, S.

T. Luo, S. Jiang, G. N. Conti, S. Honkanen, S. B. Mendes, and N. Peyghambarian, “Ag+–Na+ exchanged channel waveguides in germanate glass,” Electron. Lett. 34, 2239–2240 (1998).
[CrossRef]

Hubner, J.

C. V. Poulsen, J. Hubner, T. Rasmussen, L. U. A. Andersen, and M. Kristensen, “Characterisation of dispersion properties in planar waveguides using UV-induced Bragg grating,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

Inoue, H.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85, 29–37 (1999).
[CrossRef]

Inoue, S.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85, 29–37 (1999).
[CrossRef]

Izumitani, T.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

Jiang, S.

T. Luo, S. Jiang, G. N. Conti, S. Honkanen, S. B. Mendes, and N. Peyghambarian, “Ag+–Na+ exchanged channel waveguides in germanate glass,” Electron. Lett. 34, 2239–2240 (1998).
[CrossRef]

Jorgensen, C. K.

C. K. Jorgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

Jouart, J. P.

X. Zhang, J. Yuan, X. Liu, J. P. Jouart, and G. Mary, “Red laser induced upconversion luminescence in Er-doped calcium aluminum germanate garnet,” J. Appl. Phys. 82, 3987–3991 (1997).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kadono, K.

H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura, “Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses,” J. Appl. Phys. 83, 19–27 (1998).
[CrossRef]

Kawamoto, Y.

H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura, “Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses,” J. Appl. Phys. 83, 19–27 (1998).
[CrossRef]

Kitagawa, T.

K. Hattori, T. Kitagawa, M. Oguma, H. Okazaki, and Y. Ohmori, “Optical amplification in Er3+-doped P2O5-SiO2 planar waveguides,” J. Appl. Phys. 80, 5301–5308 (1996).
[CrossRef]

Kitamura, N.

H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura, “Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses,” J. Appl. Phys. 83, 19–27 (1998).
[CrossRef]

Kojima, K.

H. Yamada and K. Kojima, “Upconversion fluorescence in Er3+-doped Na2O-GeO2 glasses,” J. Non-Cryst. Solids 259, 57–62 (1999).
[CrossRef]

Kristensen, M.

C. V. Poulsen, J. Hubner, T. Rasmussen, L. U. A. Andersen, and M. Kristensen, “Characterisation of dispersion properties in planar waveguides using UV-induced Bragg grating,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

Lerminiaux, C.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Liu, H.

Z. Pun, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Liu, X.

X. Zhang, J. Yuan, X. Liu, J. P. Jouart, and G. Mary, “Red laser induced upconversion luminescence in Er-doped calcium aluminum germanate garnet,” J. Appl. Phys. 82, 3987–3991 (1997).
[CrossRef]

Luo, T.

T. Luo, S. Jiang, G. N. Conti, S. Honkanen, S. B. Mendes, and N. Peyghambarian, “Ag+–Na+ exchanged channel waveguides in germanate glass,” Electron. Lett. 34, 2239–2240 (1998).
[CrossRef]

Makishima, A.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85, 29–37 (1999).
[CrossRef]

Man, S. Q.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000).
[CrossRef]

Mary, G.

X. Zhang, J. Yuan, X. Liu, J. P. Jouart, and G. Mary, “Red laser induced upconversion luminescence in Er-doped calcium aluminum germanate garnet,” J. Appl. Phys. 82, 3987–3991 (1997).
[CrossRef]

Mendes, S. B.

T. Luo, S. Jiang, G. N. Conti, S. Honkanen, S. B. Mendes, and N. Peyghambarian, “Ag+–Na+ exchanged channel waveguides in germanate glass,” Electron. Lett. 34, 2239–2240 (1998).
[CrossRef]

Millar, C. A.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Miyakama, T.

T. Miyakama and D. L. Dexter, “Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb3+-sensitized crystals,” Phys. Rev. B 1, 70–80 (1970).
[CrossRef]

Montero, C.

Morgan, S. H.

Z. Pun, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Nouth, S.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Oguma, M.

K. Hattori, T. Kitagawa, M. Oguma, H. Okazaki, and Y. Ohmori, “Optical amplification in Er3+-doped P2O5-SiO2 planar waveguides,” J. Appl. Phys. 80, 5301–5308 (1996).
[CrossRef]

Ohmori, Y.

K. Hattori, T. Kitagawa, M. Oguma, H. Okazaki, and Y. Ohmori, “Optical amplification in Er3+-doped P2O5-SiO2 planar waveguides,” J. Appl. Phys. 80, 5301–5308 (1996).
[CrossRef]

Ohtsuki, T.

H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura, “Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses,” J. Appl. Phys. 83, 19–27 (1998).
[CrossRef]

Okazaki, H.

K. Hattori, T. Kitagawa, M. Oguma, H. Okazaki, and Y. Ohmori, “Optical amplification in Er3+-doped P2O5-SiO2 planar waveguides,” J. Appl. Phys. 80, 5301–5308 (1996).
[CrossRef]

Peyghambarian, N.

H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura, “Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses,” J. Appl. Phys. 83, 19–27 (1998).
[CrossRef]

T. Luo, S. Jiang, G. N. Conti, S. Honkanen, S. B. Mendes, and N. Peyghambarian, “Ag+–Na+ exchanged channel waveguides in germanate glass,” Electron. Lett. 34, 2239–2240 (1998).
[CrossRef]

Polman, A.

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-doped silica glass optical waveguide amplifier,” IEEE J. Quantum Electron. 32, 1680–1684 (1996).
[CrossRef]

Poulsen, C. V.

C. V. Poulsen, J. Hubner, T. Rasmussen, L. U. A. Andersen, and M. Kristensen, “Characterisation of dispersion properties in planar waveguides using UV-induced Bragg grating,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

Pun, E. Y. B.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000).
[CrossRef]

Pun, Z.

Z. Pun, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Putnam, M.

F. Bucholtz, K. J. Ewing, M. Putnam, and C. G. Askins, “Photoluminescence of Bragg grating in germanosilicate,” Electron. Lett. 32, 1130–1131 (1996).
[CrossRef]

Quimby, R. S.

R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett. 23, 32–33 (1987).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Rasmussen, T.

C. V. Poulsen, J. Hubner, T. Rasmussen, L. U. A. Andersen, and M. Kristensen, “Characterisation of dispersion properties in planar waveguides using UV-induced Bragg grating,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

Reisfeld, R.

C. K. Jorgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

Roman, J. E.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Sibley, W. A.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

Snoeks, E.

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-doped silica glass optical waveguide amplifier,” IEEE J. Quantum Electron. 32, 1680–1684 (1996).
[CrossRef]

Soga, K.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85, 29–37 (1999).
[CrossRef]

Suscavage, M.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

Suscavage, M. J.

R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett. 23, 32–33 (1987).
[CrossRef]

Szebesta, D.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Takahashi, M.

H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura, “Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses,” J. Appl. Phys. 83, 19–27 (1998).
[CrossRef]

Tsuda, M.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85, 29–37 (1999).
[CrossRef]

Ueda, A.

Z. Pun, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

van den Hoven, G. N.

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-doped silica glass optical waveguide amplifier,” IEEE J. Quantum Electron. 32, 1680–1684 (1996).
[CrossRef]

Vossler, G. L.

G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er: Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
[CrossRef]

Weber, M. J.

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

Whitley, T. J.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Wilkinson, J. S.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Winik, K. A.

G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er: Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
[CrossRef]

Wyatt, R.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Yamada, H.

H. Yamada and K. Kojima, “Upconversion fluorescence in Er3+-doped Na2O-GeO2 glasses,” J. Non-Cryst. Solids 259, 57–62 (1999).
[CrossRef]

Yeh, D. C.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

Yuan, J.

X. Zhang, J. Yuan, X. Liu, J. P. Jouart, and G. Mary, “Red laser induced upconversion luminescence in Er-doped calcium aluminum germanate garnet,” J. Appl. Phys. 82, 3987–3991 (1997).
[CrossRef]

Zhang, X.

X. Zhang, J. Yuan, X. Liu, J. P. Jouart, and G. Mary, “Red laser induced upconversion luminescence in Er-doped calcium aluminum germanate garnet,” J. Appl. Phys. 82, 3987–3991 (1997).
[CrossRef]

Zhang, X. X.

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

Zou, X.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000).
[CrossRef]

Electron. Lett. (7)

R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett. 23, 32–33 (1987).
[CrossRef]

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er: Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
[CrossRef]

T. Luo, S. Jiang, G. N. Conti, S. Honkanen, S. B. Mendes, and N. Peyghambarian, “Ag+–Na+ exchanged channel waveguides in germanate glass,” Electron. Lett. 34, 2239–2240 (1998).
[CrossRef]

F. Bucholtz, K. J. Ewing, M. Putnam, and C. G. Askins, “Photoluminescence of Bragg grating in germanosilicate,” Electron. Lett. 32, 1130–1131 (1996).
[CrossRef]

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

C. V. Poulsen, J. Hubner, T. Rasmussen, L. U. A. Andersen, and M. Kristensen, “Characterisation of dispersion properties in planar waveguides using UV-induced Bragg grating,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-doped silica glass optical waveguide amplifier,” IEEE J. Quantum Electron. 32, 1680–1684 (1996).
[CrossRef]

J. Appl. Phys. (6)

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85, 29–37 (1999).
[CrossRef]

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura, “Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses,” J. Appl. Phys. 83, 19–27 (1998).
[CrossRef]

K. Hattori, T. Kitagawa, M. Oguma, H. Okazaki, and Y. Ohmori, “Optical amplification in Er3+-doped P2O5-SiO2 planar waveguides,” J. Appl. Phys. 80, 5301–5308 (1996).
[CrossRef]

X. Zhang, J. Yuan, X. Liu, J. P. Jouart, and G. Mary, “Red laser induced upconversion luminescence in Er-doped calcium aluminum germanate garnet,” J. Appl. Phys. 82, 3987–3991 (1997).
[CrossRef]

Z. Pun, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

J. Chem. Phys. (3)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

J. Less-Common Met. (1)

C. K. Jorgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

J. Non-Cryst. Solids (2)

H. Yamada and K. Kojima, “Upconversion fluorescence in Er3+-doped Na2O-GeO2 glasses,” J. Non-Cryst. Solids 259, 57–62 (1999).
[CrossRef]

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (2)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Phys. Rev. B (3)

M. P. Hehlen, N. J. Cockroft, T. P. Gosnell and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

T. Miyakama and D. L. Dexter, “Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb3+-sensitized crystals,” Phys. Rev. B 1, 70–80 (1970).
[CrossRef]

Other (1)

A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications, (Artech House, Boston, Mass., 1993), pp. 1–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Absorption spectrum of 1.0-wt. % Er3+-doped Na2O·Ca3Al2Ge3O12 glasses.

Fig. 2
Fig. 2

Fluorescence spectrum of Er3+-doped Na2O·Ca3Al2Ge3O12 glasses under 798-nm excitation.

Fig. 3
Fig. 3

Fluorescence spectra of Er3+-doped and Er3+/Yb3+-codoped Na2O·Ca3Al2Ge3O12 glasses under 973-nm excitation.

Fig. 4
Fig. 4

Absorption spectra of Er3+-doped and Er3+/Yb3+-codoped glasses near 980 nm.

Fig. 5
Fig. 5

Upconversion emission spectrum of Er3+-doped Na2O·Ca3Al2Ge3O12 glasses under 798-nm excitation.

Fig. 6
Fig. 6

Dependence of upconversion emission intensity on excitation power under 798-nm excitation for Er3+-doped Na2O·Ca3Al2Ge3O12 glasses.

Fig. 7
Fig. 7

Fluorescence decay curves for 547- and 659-nm emissions of Er3+ in Na2O·Ca3Al2Ge3O12 glasses.

Fig. 8
Fig. 8

Energy-level diagram of Er3+ and Yb3+ in Na2O·Ca3Al2Ge3O12 glasses. Possible upconversion excitation mechanisms under 798- and 973-nm excitation are indicated. The linewidths of the arrows indicate the relative strengths of absorptions and emissions.

Fig. 9
Fig. 9

Upconversion emission spectrum of Er3+/Yb3+-codoped Na2O·Ca3Al2Ge3O12 glasses under 973-excitation.

Fig. 10
Fig. 10

Dependence of upconversion emission intensity on excitation power under 973-nm excitation for Er3+/Yb3+:Na2O·Ca3Al2Ge3O12 glasses.

Tables (4)

Tables Icon

Table 1 Measured and Calculated Oscillator Strengths and Judd–Ofelt Intensity Parameters of Er3+ in Na2O·Ca3Al2Ge3O12 Glasses

Tables Icon

Table 2 Intensity Parameters, Ωt (10-20 cm2), of Er3+ in Some Glasses

Tables Icon

Table 3 Predicted Spontaneous Radiative Transition Rates and Lifetimes of Er3+ in Na2O·Ca3Al2Ge3O12 Glasses

Tables Icon

Table 4 Values of Standardized Green and Red Upconversion Efficiencies of Er3+ in Different Types of Glass

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Pcalc[(S, L)J; (S, L)J]
=8π2mc3hλ(2J+1) (n2+2)29n
×t=2,4,6Ωt|(S, L)J||U(t)||(S, L)J|2,
Pexp=mc2πe2N  α(v¯)dv¯,
α(v¯)=ln[I0(v¯)/I(v¯)]d=2.303E(v¯)/d,
δrms
=sumofsquaresofdeviationsnumberoftransitions-numberofparameters1/2.
A[(S, L)J; (S, L)J]
=Aed+Amd=64π43hλ3(2J+1)×n(n2+2)29Sed+n3Smd,
Sed=e2 t=2,4,6 Ωt|(S, L)JU(t)(S, L)J|2,
Smd=e24m2c2|(S, L)JL+2S(S, L)J|2.
β[(S, L)J; (S, L)J]=A[(S, L)J; (S, L)J]S,L,J A[(S, L)J; (S, L)J],
τrad=S,L,J A[(S, L)J; (S, L)J]-1.
IUPIIRm,
η=ηqPabs(vis)Pabs(ir)Iemit(upconvertedIemit(direct).
ηq=τexpτrad,
Er3+(4I15/2)+photonEr3+(4F11/2),
Yb3+(2F7/2)+photonYb3+(2F5/2),
Yb3+(2F5/2)+Er3+(4I15/2)Yb3+(2F7/2)+Er3+(4I11/2),
Yb3+(2F5/2)+Er3+(4I11/2)Yb3+(2F7/2)+Er3+(4F7/2),
Er3+(4I11/2)+Er3+(4I11/2)Er3+(4I15/2)+Er3+(4F7/2),
Er3+(4I11/2)+photonEr3+(4F7/2).

Metrics