Abstract

We report on linear and nonlinear optical properties of Disperse Red 1-doped solgel waveguides. The refractive-index and optical-propagation losses of the guiding layer were measured between 0.756 µm and 1.64 µm. The spectral broadening of the chromophore charge-transfer transition in the visible is modeled with a Voigt-profile function. In the telecommunications window the attenuation is dominated by the overtones of the O—H bonds vibration bands. The nonlinear optical coefficients were measured at different poling strengths with the Maker-fringe method. The nonlinear coefficient d33 was found to be 4.5 pm V-1 at 1.58 µm for a poling field of 60 V µm-1.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shi, C. Zhang, H. Zhang, J. H. Betchel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
    [CrossRef]
  2. M. Jäger, G. I. Stegeman, S. Yilmaz, W. Wirges, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Poling and characterization of polymer waveguides for modal dispersion phase-matched second-harmonic generation,” J. Opt. Soc. Am. B 15, 781–788 (1998).
    [CrossRef]
  3. M. P. Andrews, “An overview of sol-gel guest-host materials chemistry for optical devices,” in Integrated Optics Devices: Potential for Commercialization, S. Nafaji and M. N. Armenise, eds., Proc. SPIE 2997, 48–59 (1997).
  4. G. H. Hsiue, R. H. Lee, and R. J. Jeng, “All sol-gel organic-inorganic nonlinear optical materials based on melamines and an alkoxysilane dye,” Polymer 40, 6417–6428 (1999).
    [CrossRef]
  5. L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
    [CrossRef]
  6. A. C. Le Duff, V. Ricci, T. Pliska, M. Canva, G. Stegeman, K. P. Chan, and R. Twieg, “Importance of chromophore environment on the near-infrared absorption of polymeric waveguides,” Appl. Opt. 39, 947–953 (2000).
    [CrossRef]
  7. A. Otomo, M. Jäger, G. Stegeman, M. C. Flipse, and M. Diemer, “Key trade-off for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
    [CrossRef]
  8. T. Pliska, W. R. Cho, J. Meier, A. C. Le Duff, V. Ricci, A. Otomo, M. Canva, G. Stegeman, P. Raimond, and F. Kajzar, “Comparative properties of nonlinear optical polymers for guided-wave second-harmonic generation at telecommunication wavelengths,” J. Opt. Soc. Am. B 17, 1554–1564 (2000).
    [CrossRef]
  9. F. Chaput, D. Riehl, J. P. Boilot, T. Gacoin, M. Canva, Y. Levy, and A. Brun, “Photorefractive sol-gel materials,” in Better Ceramics Through Chemistry VII, Mater. Res. Soc. Symp. Proc. 435, 583–588 (1996).
    [CrossRef]
  10. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, London, 1992), pp. 92–97.
  11. M. A. Mondragón, V. M. Castaño, J. Garcia, and S. Téllez, “Vibrational analysis of Si(OC2H5)4 and spectroscopic studies on the formation of glasses via silica gels,” Vib. Spectrosc. 9, 293–304 (1995).
    [CrossRef]
  12. A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
    [CrossRef]
  13. J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).
  14. Y. Lévy, F. Chaput, D. Rhiel, and J. P. Boilot, “Nonlinear optical properties of stable sol-gel systems,” in Photoactive Organic Material, F. Kajzas and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 247–262 (1995).
  15. E. Toussaere, “Polymères électro-optiques pour l’optique non linéaire: caractérisation optique et modèles statistiques,” Ph.D. dissertation (Université Paris-Sud, France, 1993).
  16. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
    [CrossRef]

2000

1999

G. H. Hsiue, R. H. Lee, and R. J. Jeng, “All sol-gel organic-inorganic nonlinear optical materials based on melamines and an alkoxysilane dye,” Polymer 40, 6417–6428 (1999).
[CrossRef]

1998

1997

M. P. Andrews, “An overview of sol-gel guest-host materials chemistry for optical devices,” in Integrated Optics Devices: Potential for Commercialization, S. Nafaji and M. N. Armenise, eds., Proc. SPIE 2997, 48–59 (1997).

1996

A. Otomo, M. Jäger, G. Stegeman, M. C. Flipse, and M. Diemer, “Key trade-off for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

F. Chaput, D. Riehl, J. P. Boilot, T. Gacoin, M. Canva, Y. Levy, and A. Brun, “Photorefractive sol-gel materials,” in Better Ceramics Through Chemistry VII, Mater. Res. Soc. Symp. Proc. 435, 583–588 (1996).
[CrossRef]

1995

M. A. Mondragón, V. M. Castaño, J. Garcia, and S. Téllez, “Vibrational analysis of Si(OC2H5)4 and spectroscopic studies on the formation of glasses via silica gels,” Vib. Spectrosc. 9, 293–304 (1995).
[CrossRef]

J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).

Y. Lévy, F. Chaput, D. Rhiel, and J. P. Boilot, “Nonlinear optical properties of stable sol-gel systems,” in Photoactive Organic Material, F. Kajzas and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 247–262 (1995).

1993

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

1992

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

1991

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Ahlheim, M.

Andrews, M. P.

M. P. Andrews, “An overview of sol-gel guest-host materials chemistry for optical devices,” in Integrated Optics Devices: Potential for Commercialization, S. Nafaji and M. N. Armenise, eds., Proc. SPIE 2997, 48–59 (1997).

Bauer, S.

Bauer-Gogonea, S.

Beljonne, D.

J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).

Betchel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Betchel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Boilot, J. P.

F. Chaput, D. Riehl, J. P. Boilot, T. Gacoin, M. Canva, Y. Levy, and A. Brun, “Photorefractive sol-gel materials,” in Better Ceramics Through Chemistry VII, Mater. Res. Soc. Symp. Proc. 435, 583–588 (1996).
[CrossRef]

Y. Lévy, F. Chaput, D. Rhiel, and J. P. Boilot, “Nonlinear optical properties of stable sol-gel systems,” in Photoactive Organic Material, F. Kajzas and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 247–262 (1995).

Bradley, D. D. C.

J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).

Brédas, J. L.

J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).

Brinker, W.

Brun, A.

F. Chaput, D. Riehl, J. P. Boilot, T. Gacoin, M. Canva, Y. Levy, and A. Brun, “Photorefractive sol-gel materials,” in Better Ceramics Through Chemistry VII, Mater. Res. Soc. Symp. Proc. 435, 583–588 (1996).
[CrossRef]

Canva, M.

Castaño, V. M.

M. A. Mondragón, V. M. Castaño, J. Garcia, and S. Téllez, “Vibrational analysis of Si(OC2H5)4 and spectroscopic studies on the formation of glasses via silica gels,” Vib. Spectrosc. 9, 293–304 (1995).
[CrossRef]

Cha, M.

J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).

Chan, K. P.

Chaput, F.

F. Chaput, D. Riehl, J. P. Boilot, T. Gacoin, M. Canva, Y. Levy, and A. Brun, “Photorefractive sol-gel materials,” in Better Ceramics Through Chemistry VII, Mater. Res. Soc. Symp. Proc. 435, 583–588 (1996).
[CrossRef]

Y. Lévy, F. Chaput, D. Rhiel, and J. P. Boilot, “Nonlinear optical properties of stable sol-gel systems,” in Photoactive Organic Material, F. Kajzas and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 247–262 (1995).

Cheng, L. T.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Cho, W. R.

Cornil, J.

J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).

Dalton, L. R.

Y. Shi, C. Zhang, H. Zhang, J. H. Betchel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Diemeer, M.

Diemer, M.

A. Otomo, M. Jäger, G. Stegeman, M. C. Flipse, and M. Diemer, “Key trade-off for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Flipse, M. C.

Gacoin, T.

F. Chaput, D. Riehl, J. P. Boilot, T. Gacoin, M. Canva, Y. Levy, and A. Brun, “Photorefractive sol-gel materials,” in Better Ceramics Through Chemistry VII, Mater. Res. Soc. Symp. Proc. 435, 583–588 (1996).
[CrossRef]

Garcia, J.

M. A. Mondragón, V. M. Castaño, J. Garcia, and S. Téllez, “Vibrational analysis of Si(OC2H5)4 and spectroscopic studies on the formation of glasses via silica gels,” Vib. Spectrosc. 9, 293–304 (1995).
[CrossRef]

Hagler, T.

J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).

Hsiue, G. H.

G. H. Hsiue, R. H. Lee, and R. J. Jeng, “All sol-gel organic-inorganic nonlinear optical materials based on melamines and an alkoxysilane dye,” Polymer 40, 6417–6428 (1999).
[CrossRef]

Jäger, M.

Jeng, R. J.

G. H. Hsiue, R. H. Lee, and R. J. Jeng, “All sol-gel organic-inorganic nonlinear optical materials based on melamines and an alkoxysilane dye,” Polymer 40, 6417–6428 (1999).
[CrossRef]

Jurich, M.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Kajzar, F.

Le Duff, A. C.

Lee, R. H.

G. H. Hsiue, R. H. Lee, and R. J. Jeng, “All sol-gel organic-inorganic nonlinear optical materials based on melamines and an alkoxysilane dye,” Polymer 40, 6417–6428 (1999).
[CrossRef]

Lehr, F.

Levy, Y.

F. Chaput, D. Riehl, J. P. Boilot, T. Gacoin, M. Canva, Y. Levy, and A. Brun, “Photorefractive sol-gel materials,” in Better Ceramics Through Chemistry VII, Mater. Res. Soc. Symp. Proc. 435, 583–588 (1996).
[CrossRef]

Lévy, Y.

Y. Lévy, F. Chaput, D. Rhiel, and J. P. Boilot, “Nonlinear optical properties of stable sol-gel systems,” in Photoactive Organic Material, F. Kajzas and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 247–262 (1995).

Marder, S. R.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Martin, S. J.

J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).

Meier, J.

Meredith, G. R.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Mondragón, M. A.

M. A. Mondragón, V. M. Castaño, J. Garcia, and S. Téllez, “Vibrational analysis of Si(OC2H5)4 and spectroscopic studies on the formation of glasses via silica gels,” Vib. Spectrosc. 9, 293–304 (1995).
[CrossRef]

Otomo, A.

Pliska, T.

Raimond, P.

Rhiel, D.

Y. Lévy, F. Chaput, D. Rhiel, and J. P. Boilot, “Nonlinear optical properties of stable sol-gel systems,” in Photoactive Organic Material, F. Kajzas and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 247–262 (1995).

Ricci, V.

Riehl, D.

F. Chaput, D. Riehl, J. P. Boilot, T. Gacoin, M. Canva, Y. Levy, and A. Brun, “Photorefractive sol-gel materials,” in Better Ceramics Through Chemistry VII, Mater. Res. Soc. Symp. Proc. 435, 583–588 (1996).
[CrossRef]

Rikken, G.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Betchel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Betchel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Skumanich, A.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Stähelin, M.

Stegeman, G.

T. Pliska, W. R. Cho, J. Meier, A. C. Le Duff, V. Ricci, A. Otomo, M. Canva, G. Stegeman, P. Raimond, and F. Kajzar, “Comparative properties of nonlinear optical polymers for guided-wave second-harmonic generation at telecommunication wavelengths,” J. Opt. Soc. Am. B 17, 1554–1564 (2000).
[CrossRef]

A. C. Le Duff, V. Ricci, T. Pliska, M. Canva, G. Stegeman, K. P. Chan, and R. Twieg, “Importance of chromophore environment on the near-infrared absorption of polymeric waveguides,” Appl. Opt. 39, 947–953 (2000).
[CrossRef]

A. Otomo, M. Jäger, G. Stegeman, M. C. Flipse, and M. Diemer, “Key trade-off for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).

Stegeman, G. I.

Steier, W. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Betchel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Stevenson, S. H.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Swalen, J. D.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Tam, W.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Téllez, S.

M. A. Mondragón, V. M. Castaño, J. Garcia, and S. Téllez, “Vibrational analysis of Si(OC2H5)4 and spectroscopic studies on the formation of glasses via silica gels,” Vib. Spectrosc. 9, 293–304 (1995).
[CrossRef]

Torruellas, W. E.

J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).

Twieg, R.

Wirges, W.

Yilmaz, S.

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Betchel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Betchel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Zysset, B.

Appl. Opt.

Appl. Phys. Lett.

A. Otomo, M. Jäger, G. Stegeman, M. C. Flipse, and M. Diemer, “Key trade-off for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

IEEE J. Quantum Electron.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Mater. Res. Soc. Symp. Proc.

F. Chaput, D. Riehl, J. P. Boilot, T. Gacoin, M. Canva, Y. Levy, and A. Brun, “Photorefractive sol-gel materials,” in Better Ceramics Through Chemistry VII, Mater. Res. Soc. Symp. Proc. 435, 583–588 (1996).
[CrossRef]

Polymer

G. H. Hsiue, R. H. Lee, and R. J. Jeng, “All sol-gel organic-inorganic nonlinear optical materials based on melamines and an alkoxysilane dye,” Polymer 40, 6417–6428 (1999).
[CrossRef]

Proc. NATO Adv. Res. Workshop

J. Cornil, D. Beljonne, S. J. Martin, D. D. C. Bradley, T. Hagler, M. Cha, W. E. Torruellas, G. Stegeman, and J. L. Brédas, “Vibronic contributions in frequency-dependent linear and nonlinear optical processes: a joint experimental and theoretical study,” in Photoactive Organic Material, F. Kajzar and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 17–32 (1995).

Y. Lévy, F. Chaput, D. Rhiel, and J. P. Boilot, “Nonlinear optical properties of stable sol-gel systems,” in Photoactive Organic Material, F. Kajzas and V. M. Agranovich, eds., Proc. NATO Adv. Res. Workshop 9, 247–262 (1995).

Proc. SPIE

M. P. Andrews, “An overview of sol-gel guest-host materials chemistry for optical devices,” in Integrated Optics Devices: Potential for Commercialization, S. Nafaji and M. N. Armenise, eds., Proc. SPIE 2997, 48–59 (1997).

Science

Y. Shi, C. Zhang, H. Zhang, J. H. Betchel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Vib. Spectrosc.

M. A. Mondragón, V. M. Castaño, J. Garcia, and S. Téllez, “Vibrational analysis of Si(OC2H5)4 and spectroscopic studies on the formation of glasses via silica gels,” Vib. Spectrosc. 9, 293–304 (1995).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, London, 1992), pp. 92–97.

E. Toussaere, “Polymères électro-optiques pour l’optique non linéaire: caractérisation optique et modèles statistiques,” Ph.D. dissertation (Université Paris-Sud, France, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the hybrid film synthesis from silane-modified monomers. The three monomers are dissolved in tetrahydrofurane. Acidic water is added to the solution to hydrolyze all the ethoxy groups. After complete hydrolysis, a base is added to promote the condensation of the released silanols into siloxane bonds.

Fig. 2
Fig. 2

Refractive index of SiK–DR1–TEOS material in the visible–NIR. The ellipsometry measurements (filled squares) were performed on 2.5-µm-thick solgel films spin coated on silicon substrates. Two other samples were tested in an attenuated-total-reflection experiment (filled circles and triangles). A grating-coupling method was used to check the influence of the curing (tall diamond, noncured; short diamond, cured). The ellipsometry data are fitted according to the Sellmeier model.

Fig. 3
Fig. 3

(a) Absorption spectrum of SiK–DR1–TEOS solgel. The data between 0.4 and 0.65 µm were obtained by transmission spectroscopy with a spectrophotometer. The optical propagation losses are also presented (diamonds). The absorption spectrum is fitted with both a Voigt (solid curve) and a Lorentz (dashed curve) profile modeling the inhomogeneous and the homogeneous broadening, respectively. (b) Expanded view of the IR waveguide loss of a planar SiK–DR1–TEOS of 2-µm thickness on SiO2. The scattering losses αsc are calculated assuming a film roughness of 5 nm. The inset shows the waveguide structure used for the propagation-loss measurement.

Fig. 4
Fig. 4

Nonlinear coefficient d33 as a function of the poling strength. The measurements were performed at 1.58 µm.

Tables (1)

Tables Icon

Table 1 Fitting Parameters of SiK–DR1–TEOS Absorption Profiles

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n2(ω)-1=A0+A1ω2-ω02,
α(ω)=ωcn(ω) Im[χ(1)(ω)],
χ(1)(ω)=NfωΘε0|μ01|21ω01-ω+jΓ01/2+1ω01+ω-jΓ01/2,
χ(1)(ω)=πNfωΘε0|μ01|2×-+1ω01-ω+jΓ01/2+1ω01+ω-jΓ01/2g01(ω01-ω01)×d(ω01-ω01),
g01(ω01-ω01)=1πΔω01 exp-ω01-ω01Δω01,
Δω01=Δω011-ζ+ζω01ω2.

Metrics