R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).

[CrossRef]

J. Skaar and K. M. Risvik, “A genetic algorithm for the inverse problem in synthesis of fiber gratings,” J. Lightwave Technol. 16, 1928–1932 (1998).

[CrossRef]

B. Ortega, L. Dong, and L. Reekie, “All-fiber optical add–drop multiplexer based on a selective fused coupler and a single fiber Bragg grating,” Appl. Opt. 37, 7712–7717 (1998).

[CrossRef]

S. Thériault, K. O. Hill, F. Bilodeau, D. C. Johnson, J. Albert, G. Drouin, and A. Béliveau, “High-g accelerometer based on in-fiber Bragg grating,” Opt. Rev. 4, 145–147 (1998).

[CrossRef]

L. Y. Lo, “Using in-fiber Bragg grating sensors for measuring axial strain and temperature simultaneously on surfaces of structures,” Opt. Eng. 37, 2272–2276 (1998).

[CrossRef]

A. Minato and N. Sugimoto, “Design of a four-element, hollow-cube corner retroreflector for satellites by use of a genetic algorithm,” Appl. Opt. 37, 438–442 (1998).

[CrossRef]

T. Kuo and S.-H. Hwang, “Using disruptive selection to maintain diversity in genetic algorithms,” Appl. Intel. 7, 257–267 (1997).

[CrossRef]

E. Peral, J. Capmany, and J. Marti, “Iterative solution to the Gel’fand–Levitan–Marchenko coupled equations and application to synthesis of fiber gratings,” IEEE J. Quantum Electron. 32, 2078–2084 (1996).

[CrossRef]

R. Boudreau and N. Turkkan, “Solving the forward kinematics of parallel manipulators with a genetic algorithm,” J. Rob. Syst. 13, 111–125 (1996).

[CrossRef]

K. A. Winick and J. E. Roman, “Design of corrugated waveguide filters by Fourier transform techniques,” IEEE J. Quantum Electron. 26, 1918–1929 (1990).

[CrossRef]

S. Thériault, K. O. Hill, F. Bilodeau, D. C. Johnson, J. Albert, G. Drouin, and A. Béliveau, “High-g accelerometer based on in-fiber Bragg grating,” Opt. Rev. 4, 145–147 (1998).

[CrossRef]

S. Thériault, K. O. Hill, F. Bilodeau, D. C. Johnson, J. Albert, G. Drouin, and A. Béliveau, “High-g accelerometer based on in-fiber Bragg grating,” Opt. Rev. 4, 145–147 (1998).

[CrossRef]

S. Thériault, K. O. Hill, F. Bilodeau, D. C. Johnson, J. Albert, G. Drouin, and A. Béliveau, “High-g accelerometer based on in-fiber Bragg grating,” Opt. Rev. 4, 145–147 (1998).

[CrossRef]

E. Peral, J. Capmany, and J. Marti, “Iterative solution to the Gel’fand–Levitan–Marchenko coupled equations and application to synthesis of fiber gratings,” IEEE J. Quantum Electron. 32, 2078–2084 (1996).

[CrossRef]

S. Thériault, K. O. Hill, F. Bilodeau, D. C. Johnson, J. Albert, G. Drouin, and A. Béliveau, “High-g accelerometer based on in-fiber Bragg grating,” Opt. Rev. 4, 145–147 (1998).

[CrossRef]

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).

[CrossRef]

S. Thériault, K. O. Hill, F. Bilodeau, D. C. Johnson, J. Albert, G. Drouin, and A. Béliveau, “High-g accelerometer based on in-fiber Bragg grating,” Opt. Rev. 4, 145–147 (1998).

[CrossRef]

T. Kuo and S.-H. Hwang, “Using disruptive selection to maintain diversity in genetic algorithms,” Appl. Intel. 7, 257–267 (1997).

[CrossRef]

S. Thériault, K. O. Hill, F. Bilodeau, D. C. Johnson, J. Albert, G. Drouin, and A. Béliveau, “High-g accelerometer based on in-fiber Bragg grating,” Opt. Rev. 4, 145–147 (1998).

[CrossRef]

T. Kuo and S.-H. Hwang, “Using disruptive selection to maintain diversity in genetic algorithms,” Appl. Intel. 7, 257–267 (1997).

[CrossRef]

L. Y. Lo, “Using in-fiber Bragg grating sensors for measuring axial strain and temperature simultaneously on surfaces of structures,” Opt. Eng. 37, 2272–2276 (1998).

[CrossRef]

E. Peral, J. Capmany, and J. Marti, “Iterative solution to the Gel’fand–Levitan–Marchenko coupled equations and application to synthesis of fiber gratings,” IEEE J. Quantum Electron. 32, 2078–2084 (1996).

[CrossRef]

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).

[CrossRef]

E. Peral, J. Capmany, and J. Marti, “Iterative solution to the Gel’fand–Levitan–Marchenko coupled equations and application to synthesis of fiber gratings,” IEEE J. Quantum Electron. 32, 2078–2084 (1996).

[CrossRef]

K. A. Winick and J. E. Roman, “Design of corrugated waveguide filters by Fourier transform techniques,” IEEE J. Quantum Electron. 26, 1918–1929 (1990).

[CrossRef]

S. Thériault, K. O. Hill, F. Bilodeau, D. C. Johnson, J. Albert, G. Drouin, and A. Béliveau, “High-g accelerometer based on in-fiber Bragg grating,” Opt. Rev. 4, 145–147 (1998).

[CrossRef]

R. Boudreau and N. Turkkan, “Solving the forward kinematics of parallel manipulators with a genetic algorithm,” J. Rob. Syst. 13, 111–125 (1996).

[CrossRef]

K. A. Winick and J. E. Roman, “Design of corrugated waveguide filters by Fourier transform techniques,” IEEE J. Quantum Electron. 26, 1918–1929 (1990).

[CrossRef]

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).

[CrossRef]

T. Kuo and S.-H. Hwang, “Using disruptive selection to maintain diversity in genetic algorithms,” Appl. Intel. 7, 257–267 (1997).

[CrossRef]

S. Huang, M. LeBlanc, M. N. Ohn, and R. M. Measures, “Bragg intragrating structural sensing,” Appl. Opt. 34, 5003–5009 (1995).

[CrossRef]
[PubMed]

A. Minato and N. Sugimoto, “Design of a four-element, hollow-cube corner retroreflector for satellites by use of a genetic algorithm,” Appl. Opt. 37, 438–442 (1998).

[CrossRef]

B. Ortega, L. Dong, and L. Reekie, “All-fiber optical add–drop multiplexer based on a selective fused coupler and a single fiber Bragg grating,” Appl. Opt. 37, 7712–7717 (1998).

[CrossRef]

K. A. Winick and J. E. Roman, “Design of corrugated waveguide filters by Fourier transform techniques,” IEEE J. Quantum Electron. 26, 1918–1929 (1990).

[CrossRef]

E. Peral, J. Capmany, and J. Marti, “Iterative solution to the Gel’fand–Levitan–Marchenko coupled equations and application to synthesis of fiber gratings,” IEEE J. Quantum Electron. 32, 2078–2084 (1996).

[CrossRef]

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).

[CrossRef]

R. Boudreau and N. Turkkan, “Solving the forward kinematics of parallel manipulators with a genetic algorithm,” J. Rob. Syst. 13, 111–125 (1996).

[CrossRef]

L. Y. Lo, “Using in-fiber Bragg grating sensors for measuring axial strain and temperature simultaneously on surfaces of structures,” Opt. Eng. 37, 2272–2276 (1998).

[CrossRef]

S. Thériault, K. O. Hill, F. Bilodeau, D. C. Johnson, J. Albert, G. Drouin, and A. Béliveau, “High-g accelerometer based on in-fiber Bragg grating,” Opt. Rev. 4, 145–147 (1998).

[CrossRef]

J. A. R. Williams and I. Bennion, “Applications of fiber gratings in microwave photonics,” Photonics Research Group, Aston University, http://benedick.aston.ac.uk/Photonics/publications/MR97/ (1997).

J. H. Holland, Adaptation in Natural and Artificial Systems (U. Michigan Press, Ann Arbor, Mich., 1975).

A. H. Wright, “Genetic algorithms for real parameter optimization,” in Foundations of Genetic Algorithms, G. J. E. Rawlins, ed. (Morgan Kaufman, San Mateo, Calif., 1991), pp. 205–218.

S. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, Mass., 1989).

L. Davis, Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York, 1991).

Z. Michalewicz, Genetic Algorithms (Springer-Verlag, New York, 1992).