Abstract

The photodegradation of lissamine-functionalized Nd complexes doped at a concentration of 10 wt. % in a fluorinated polycarbonate waveguide has been studied. On illumination at 458 nm and at 488 nm, the luminescence spectrum of the lissamine sensitizer shifts to shorter wavelengths, while the luminescence intensity first increases and then decreases. The spectral shape of the Nd luminescence does not change on illumination, and the luminescence intensity shows a gradual decrease as a function of time. The difference in response between the lissamine and the Nd luminescence can be described by a model that assumes the existence of two different types of complex. One type exhibits energy transfer from the lissamine to the neodymium ion, with a large lissamine intersystem crossing rate, and hence low sensitivity to concentration quenching. The other type does not show energy transfer to Nd, and does experience concentration quenching.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kitagawa, K. Hattori, and Y. Hibino, “Neodymium-doped silica-based planar waveguide laser,” J. Lightwave Technol. 12, 436–442 (1994).
    [CrossRef]
  2. D. P. Shepherd, C. T. A. Brown, T. J. Warburton, D. C. Hanna, A. C. Tropper, and B. Ferrand, “A diode-pumped, high gain, planar waveguide Nd:Y3Al5O12 amplifier,” Appl. Phys. Lett. 71, 876–878 (1997).
    [CrossRef]
  3. J. Hulliger, P. Rogin, and R. Burkhalter, “Waveguides in YLF grown by liquid-phase epitaxy,” Laser Phys. 8, 764–768 (1998).
  4. R. Brinkmann, W. Sohler, H. Suche, and C. Wersig, “Fluorescence and laser operation in single-mode Ti-diffused Nd:MgO:LiNbO3 waveguide structures,” IEEE J. Quantum Electron. 28, 466–470 (1992).
    [CrossRef]
  5. E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
    [CrossRef]
  6. R. Gao, C. Koeppen, G. Zheng, and A. F. Garito, “Rare-earth-doped polymers for optical amplification and lasing,” in Rare-Earth-Doped Devices II, S. Honkanen and S. Jiang, eds., Proc. SPIE 3280, 14–22 (1998).
    [CrossRef]
  7. R. T. Chen, M. Li, S. Tang, and D. Gerald, “Rare-earth-ions-doped graded-index single-mode polymer waveguide amplifier,” in Technologies for Optical Fiber Communications, G. J. Brown, D. J. Decoster, J. S. La Course, Y. Park, K. D. Pedrotti, and S. R. Sloan eds., Proc. SPIE 2149, 77–78 (1994).
    [CrossRef]
  8. L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
    [CrossRef]
  9. L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of lissamine functionalised Nd3+ complexes in polymer waveguides and solution,” Opt. Mater. 14, 101–107 (2000).
    [CrossRef]
  10. S. I. Klink, P. Oude Alink, L. Grave, F. G. A. Peters, J. W. Hofstraat, F. A. J. Geurts, and F. C. J. M. van Veggel, “Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+,” J. Chem. Soc., Perkin Trans. 2 2, 363–372 (2001).
    [CrossRef]
  11. R. H. Woudenberg and T. O. Boonstra, “Polymers comprising a fluorinated carbonate moiety,” International patent, deposited September 3, 1998, WO 9838237.
  12. T. Förster, and E. Koning, “Absorptionsspektren und Fluoreszeneigenschaften konzentrierter Lösungen organischer Farbstoffe,” Z. Elektrochem. 61, 344–348 (1957).
  13. E. G. McRae and M. Kasha, “Enhancement of phosphorescence ability upon aggregation of dye molecules,” J. Chem. Phys. 28, 721–722 (1958).
    [CrossRef]
  14. R. W. Chambers, T. Kijiwara, and D. R. Kearns, “Effect of dimer formation on the electronic absorption and emission spectra of ionic dyes,” J. Phys. Chem. 78, 380–385 (1974).
    [CrossRef]
  15. S. Ahmed, S-W. Zang, K. M. Yoo, M. A. Ali, and R. R. Alfano, “Effect of multiple light scattering and self-absorption on the fluorescence and excitation spectra of dyes in random media,” Appl. Opt. 33, 2746–2766 (1994).
    [CrossRef] [PubMed]
  16. S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
    [CrossRef]
  17. S. Tobita, M. Arakawa, and I. Tanaka, “Electronic relaxation processes of rare-earth chelates of benzoyltrifluoroacetone,” J. Phys. Chem. 88, 2697–2702 (1984).
    [CrossRef]
  18. S. Tobita, M. Arakawa, and I. Tanaka, “The paramagnetic effect on the ligand localized S1–T1, intersystem crossing in the rare-earth-metal complexes with methyl salicylate,” J. Phys. Chem. 89, 5649–5654 (1985).
    [CrossRef]
  19. M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III), and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
    [CrossRef]
  20. M. Kubista, J. Nygren, A. Elbergali, and R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
    [CrossRef]

2001 (1)

S. I. Klink, P. Oude Alink, L. Grave, F. G. A. Peters, J. W. Hofstraat, F. A. J. Geurts, and F. C. J. M. van Veggel, “Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+,” J. Chem. Soc., Perkin Trans. 2 2, 363–372 (2001).
[CrossRef]

2000 (2)

S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[CrossRef]

L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of lissamine functionalised Nd3+ complexes in polymer waveguides and solution,” Opt. Mater. 14, 101–107 (2000).
[CrossRef]

1999 (1)

M. Kubista, J. Nygren, A. Elbergali, and R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

1998 (3)

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[CrossRef]

R. Gao, C. Koeppen, G. Zheng, and A. F. Garito, “Rare-earth-doped polymers for optical amplification and lasing,” in Rare-Earth-Doped Devices II, S. Honkanen and S. Jiang, eds., Proc. SPIE 3280, 14–22 (1998).
[CrossRef]

J. Hulliger, P. Rogin, and R. Burkhalter, “Waveguides in YLF grown by liquid-phase epitaxy,” Laser Phys. 8, 764–768 (1998).

1997 (2)

D. P. Shepherd, C. T. A. Brown, T. J. Warburton, D. C. Hanna, A. C. Tropper, and B. Ferrand, “A diode-pumped, high gain, planar waveguide Nd:Y3Al5O12 amplifier,” Appl. Phys. Lett. 71, 876–878 (1997).
[CrossRef]

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III), and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[CrossRef]

1994 (3)

T. Kitagawa, K. Hattori, and Y. Hibino, “Neodymium-doped silica-based planar waveguide laser,” J. Lightwave Technol. 12, 436–442 (1994).
[CrossRef]

R. T. Chen, M. Li, S. Tang, and D. Gerald, “Rare-earth-ions-doped graded-index single-mode polymer waveguide amplifier,” in Technologies for Optical Fiber Communications, G. J. Brown, D. J. Decoster, J. S. La Course, Y. Park, K. D. Pedrotti, and S. R. Sloan eds., Proc. SPIE 2149, 77–78 (1994).
[CrossRef]

S. Ahmed, S-W. Zang, K. M. Yoo, M. A. Ali, and R. R. Alfano, “Effect of multiple light scattering and self-absorption on the fluorescence and excitation spectra of dyes in random media,” Appl. Opt. 33, 2746–2766 (1994).
[CrossRef] [PubMed]

1992 (1)

R. Brinkmann, W. Sohler, H. Suche, and C. Wersig, “Fluorescence and laser operation in single-mode Ti-diffused Nd:MgO:LiNbO3 waveguide structures,” IEEE J. Quantum Electron. 28, 466–470 (1992).
[CrossRef]

1991 (1)

E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[CrossRef]

1985 (1)

S. Tobita, M. Arakawa, and I. Tanaka, “The paramagnetic effect on the ligand localized S1–T1, intersystem crossing in the rare-earth-metal complexes with methyl salicylate,” J. Phys. Chem. 89, 5649–5654 (1985).
[CrossRef]

1984 (1)

S. Tobita, M. Arakawa, and I. Tanaka, “Electronic relaxation processes of rare-earth chelates of benzoyltrifluoroacetone,” J. Phys. Chem. 88, 2697–2702 (1984).
[CrossRef]

1974 (1)

R. W. Chambers, T. Kijiwara, and D. R. Kearns, “Effect of dimer formation on the electronic absorption and emission spectra of ionic dyes,” J. Phys. Chem. 78, 380–385 (1974).
[CrossRef]

1958 (1)

E. G. McRae and M. Kasha, “Enhancement of phosphorescence ability upon aggregation of dye molecules,” J. Chem. Phys. 28, 721–722 (1958).
[CrossRef]

1957 (1)

T. Förster, and E. Koning, “Absorptionsspektren und Fluoreszeneigenschaften konzentrierter Lösungen organischer Farbstoffe,” Z. Elektrochem. 61, 344–348 (1957).

Ahmed, S.

Alfano, R. R.

Ali, M. A.

Alink, P. Oude

S. I. Klink, P. Oude Alink, L. Grave, F. G. A. Peters, J. W. Hofstraat, F. A. J. Geurts, and F. C. J. M. van Veggel, “Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+,” J. Chem. Soc., Perkin Trans. 2 2, 363–372 (2001).
[CrossRef]

Arakawa, M.

S. Tobita, M. Arakawa, and I. Tanaka, “The paramagnetic effect on the ligand localized S1–T1, intersystem crossing in the rare-earth-metal complexes with methyl salicylate,” J. Phys. Chem. 89, 5649–5654 (1985).
[CrossRef]

S. Tobita, M. Arakawa, and I. Tanaka, “Electronic relaxation processes of rare-earth chelates of benzoyltrifluoroacetone,” J. Phys. Chem. 88, 2697–2702 (1984).
[CrossRef]

Brinkmann, R.

R. Brinkmann, W. Sohler, H. Suche, and C. Wersig, “Fluorescence and laser operation in single-mode Ti-diffused Nd:MgO:LiNbO3 waveguide structures,” IEEE J. Quantum Electron. 28, 466–470 (1992).
[CrossRef]

Brown, C. T. A.

D. P. Shepherd, C. T. A. Brown, T. J. Warburton, D. C. Hanna, A. C. Tropper, and B. Ferrand, “A diode-pumped, high gain, planar waveguide Nd:Y3Al5O12 amplifier,” Appl. Phys. Lett. 71, 876–878 (1997).
[CrossRef]

Burkhalter, R.

J. Hulliger, P. Rogin, and R. Burkhalter, “Waveguides in YLF grown by liquid-phase epitaxy,” Laser Phys. 8, 764–768 (1998).

Chambers, R. W.

R. W. Chambers, T. Kijiwara, and D. R. Kearns, “Effect of dimer formation on the electronic absorption and emission spectra of ionic dyes,” J. Phys. Chem. 78, 380–385 (1974).
[CrossRef]

Chen, R. T.

R. T. Chen, M. Li, S. Tang, and D. Gerald, “Rare-earth-ions-doped graded-index single-mode polymer waveguide amplifier,” in Technologies for Optical Fiber Communications, G. J. Brown, D. J. Decoster, J. S. La Course, Y. Park, K. D. Pedrotti, and S. R. Sloan eds., Proc. SPIE 2149, 77–78 (1994).
[CrossRef]

De Micheli, M.

E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[CrossRef]

Elbergali, A.

M. Kubista, J. Nygren, A. Elbergali, and R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

Ferrand, B.

D. P. Shepherd, C. T. A. Brown, T. J. Warburton, D. C. Hanna, A. C. Tropper, and B. Ferrand, “A diode-pumped, high gain, planar waveguide Nd:Y3Al5O12 amplifier,” Appl. Phys. Lett. 71, 876–878 (1997).
[CrossRef]

Förster, T.

T. Förster, and E. Koning, “Absorptionsspektren und Fluoreszeneigenschaften konzentrierter Lösungen organischer Farbstoffe,” Z. Elektrochem. 61, 344–348 (1957).

Gao, R.

R. Gao, C. Koeppen, G. Zheng, and A. F. Garito, “Rare-earth-doped polymers for optical amplification and lasing,” in Rare-Earth-Doped Devices II, S. Honkanen and S. Jiang, eds., Proc. SPIE 3280, 14–22 (1998).
[CrossRef]

Garito, A. F.

R. Gao, C. Koeppen, G. Zheng, and A. F. Garito, “Rare-earth-doped polymers for optical amplification and lasing,” in Rare-Earth-Doped Devices II, S. Honkanen and S. Jiang, eds., Proc. SPIE 3280, 14–22 (1998).
[CrossRef]

Gerald, D.

R. T. Chen, M. Li, S. Tang, and D. Gerald, “Rare-earth-ions-doped graded-index single-mode polymer waveguide amplifier,” in Technologies for Optical Fiber Communications, G. J. Brown, D. J. Decoster, J. S. La Course, Y. Park, K. D. Pedrotti, and S. R. Sloan eds., Proc. SPIE 2149, 77–78 (1994).
[CrossRef]

Geurts, F. A. J.

S. I. Klink, P. Oude Alink, L. Grave, F. G. A. Peters, J. W. Hofstraat, F. A. J. Geurts, and F. C. J. M. van Veggel, “Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+,” J. Chem. Soc., Perkin Trans. 2 2, 363–372 (2001).
[CrossRef]

S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[CrossRef]

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III), and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[CrossRef]

Grave, L.

S. I. Klink, P. Oude Alink, L. Grave, F. G. A. Peters, J. W. Hofstraat, F. A. J. Geurts, and F. C. J. M. van Veggel, “Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+,” J. Chem. Soc., Perkin Trans. 2 2, 363–372 (2001).
[CrossRef]

L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of lissamine functionalised Nd3+ complexes in polymer waveguides and solution,” Opt. Mater. 14, 101–107 (2000).
[CrossRef]

S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[CrossRef]

Grezes-Besset, C.

E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[CrossRef]

Hanna, D. C.

D. P. Shepherd, C. T. A. Brown, T. J. Warburton, D. C. Hanna, A. C. Tropper, and B. Ferrand, “A diode-pumped, high gain, planar waveguide Nd:Y3Al5O12 amplifier,” Appl. Phys. Lett. 71, 876–878 (1997).
[CrossRef]

Hattori, K.

T. Kitagawa, K. Hattori, and Y. Hibino, “Neodymium-doped silica-based planar waveguide laser,” J. Lightwave Technol. 12, 436–442 (1994).
[CrossRef]

He, Q.

E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[CrossRef]

Hebbink, G. A.

L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of lissamine functionalised Nd3+ complexes in polymer waveguides and solution,” Opt. Mater. 14, 101–107 (2000).
[CrossRef]

Hibino, Y.

T. Kitagawa, K. Hattori, and Y. Hibino, “Neodymium-doped silica-based planar waveguide laser,” J. Lightwave Technol. 12, 436–442 (1994).
[CrossRef]

Hofstraat, J. W.

S. I. Klink, P. Oude Alink, L. Grave, F. G. A. Peters, J. W. Hofstraat, F. A. J. Geurts, and F. C. J. M. van Veggel, “Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+,” J. Chem. Soc., Perkin Trans. 2 2, 363–372 (2001).
[CrossRef]

S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[CrossRef]

L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of lissamine functionalised Nd3+ complexes in polymer waveguides and solution,” Opt. Mater. 14, 101–107 (2000).
[CrossRef]

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[CrossRef]

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III), and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[CrossRef]

Hulliger, J.

J. Hulliger, P. Rogin, and R. Burkhalter, “Waveguides in YLF grown by liquid-phase epitaxy,” Laser Phys. 8, 764–768 (1998).

Kasha, M.

E. G. McRae and M. Kasha, “Enhancement of phosphorescence ability upon aggregation of dye molecules,” J. Chem. Phys. 28, 721–722 (1958).
[CrossRef]

Kearns, D. R.

R. W. Chambers, T. Kijiwara, and D. R. Kearns, “Effect of dimer formation on the electronic absorption and emission spectra of ionic dyes,” J. Phys. Chem. 78, 380–385 (1974).
[CrossRef]

Kijiwara, T.

R. W. Chambers, T. Kijiwara, and D. R. Kearns, “Effect of dimer formation on the electronic absorption and emission spectra of ionic dyes,” J. Phys. Chem. 78, 380–385 (1974).
[CrossRef]

Kitagawa, T.

T. Kitagawa, K. Hattori, and Y. Hibino, “Neodymium-doped silica-based planar waveguide laser,” J. Lightwave Technol. 12, 436–442 (1994).
[CrossRef]

Klink, S. I.

S. I. Klink, P. Oude Alink, L. Grave, F. G. A. Peters, J. W. Hofstraat, F. A. J. Geurts, and F. C. J. M. van Veggel, “Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+,” J. Chem. Soc., Perkin Trans. 2 2, 363–372 (2001).
[CrossRef]

L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of lissamine functionalised Nd3+ complexes in polymer waveguides and solution,” Opt. Mater. 14, 101–107 (2000).
[CrossRef]

S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[CrossRef]

Koeppen, C.

R. Gao, C. Koeppen, G. Zheng, and A. F. Garito, “Rare-earth-doped polymers for optical amplification and lasing,” in Rare-Earth-Doped Devices II, S. Honkanen and S. Jiang, eds., Proc. SPIE 3280, 14–22 (1998).
[CrossRef]

Koning, E.

T. Förster, and E. Koning, “Absorptionsspektren und Fluoreszeneigenschaften konzentrierter Lösungen organischer Farbstoffe,” Z. Elektrochem. 61, 344–348 (1957).

Kubista, M.

M. Kubista, J. Nygren, A. Elbergali, and R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

Lallier, E.

E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[CrossRef]

Li, M.

R. T. Chen, M. Li, S. Tang, and D. Gerald, “Rare-earth-ions-doped graded-index single-mode polymer waveguide amplifier,” in Technologies for Optical Fiber Communications, G. J. Brown, D. J. Decoster, J. S. La Course, Y. Park, K. D. Pedrotti, and S. R. Sloan eds., Proc. SPIE 2149, 77–78 (1994).
[CrossRef]

Li, M. J.

E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[CrossRef]

McRae, E. G.

E. G. McRae and M. Kasha, “Enhancement of phosphorescence ability upon aggregation of dye molecules,” J. Chem. Phys. 28, 721–722 (1958).
[CrossRef]

Nygren, J.

M. Kubista, J. Nygren, A. Elbergali, and R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

Ostrowsky, D. B.

E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[CrossRef]

Papuchon, M.

E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[CrossRef]

Peletier, E.

E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[CrossRef]

Peters, F. G. A.

S. I. Klink, P. Oude Alink, L. Grave, F. G. A. Peters, J. W. Hofstraat, F. A. J. Geurts, and F. C. J. M. van Veggel, “Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+,” J. Chem. Soc., Perkin Trans. 2 2, 363–372 (2001).
[CrossRef]

Pocholle, J. P.

E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[CrossRef]

Polman, A.

L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of lissamine functionalised Nd3+ complexes in polymer waveguides and solution,” Opt. Mater. 14, 101–107 (2000).
[CrossRef]

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[CrossRef]

Reinhoudt, D. N.

L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of lissamine functionalised Nd3+ complexes in polymer waveguides and solution,” Opt. Mater. 14, 101–107 (2000).
[CrossRef]

S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[CrossRef]

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[CrossRef]

Rogin, P.

J. Hulliger, P. Rogin, and R. Burkhalter, “Waveguides in YLF grown by liquid-phase epitaxy,” Laser Phys. 8, 764–768 (1998).

Shepherd, D. P.

D. P. Shepherd, C. T. A. Brown, T. J. Warburton, D. C. Hanna, A. C. Tropper, and B. Ferrand, “A diode-pumped, high gain, planar waveguide Nd:Y3Al5O12 amplifier,” Appl. Phys. Lett. 71, 876–878 (1997).
[CrossRef]

Sjöback, R.

M. Kubista, J. Nygren, A. Elbergali, and R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

Slooff, L. H.

L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of lissamine functionalised Nd3+ complexes in polymer waveguides and solution,” Opt. Mater. 14, 101–107 (2000).
[CrossRef]

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[CrossRef]

Sohler, W.

R. Brinkmann, W. Sohler, H. Suche, and C. Wersig, “Fluorescence and laser operation in single-mode Ti-diffused Nd:MgO:LiNbO3 waveguide structures,” IEEE J. Quantum Electron. 28, 466–470 (1992).
[CrossRef]

Suche, H.

R. Brinkmann, W. Sohler, H. Suche, and C. Wersig, “Fluorescence and laser operation in single-mode Ti-diffused Nd:MgO:LiNbO3 waveguide structures,” IEEE J. Quantum Electron. 28, 466–470 (1992).
[CrossRef]

Tanaka, I.

S. Tobita, M. Arakawa, and I. Tanaka, “The paramagnetic effect on the ligand localized S1–T1, intersystem crossing in the rare-earth-metal complexes with methyl salicylate,” J. Phys. Chem. 89, 5649–5654 (1985).
[CrossRef]

S. Tobita, M. Arakawa, and I. Tanaka, “Electronic relaxation processes of rare-earth chelates of benzoyltrifluoroacetone,” J. Phys. Chem. 88, 2697–2702 (1984).
[CrossRef]

Tang, S.

R. T. Chen, M. Li, S. Tang, and D. Gerald, “Rare-earth-ions-doped graded-index single-mode polymer waveguide amplifier,” in Technologies for Optical Fiber Communications, G. J. Brown, D. J. Decoster, J. S. La Course, Y. Park, K. D. Pedrotti, and S. R. Sloan eds., Proc. SPIE 2149, 77–78 (1994).
[CrossRef]

Tobita, S.

S. Tobita, M. Arakawa, and I. Tanaka, “The paramagnetic effect on the ligand localized S1–T1, intersystem crossing in the rare-earth-metal complexes with methyl salicylate,” J. Phys. Chem. 89, 5649–5654 (1985).
[CrossRef]

S. Tobita, M. Arakawa, and I. Tanaka, “Electronic relaxation processes of rare-earth chelates of benzoyltrifluoroacetone,” J. Phys. Chem. 88, 2697–2702 (1984).
[CrossRef]

Tropper, A. C.

D. P. Shepherd, C. T. A. Brown, T. J. Warburton, D. C. Hanna, A. C. Tropper, and B. Ferrand, “A diode-pumped, high gain, planar waveguide Nd:Y3Al5O12 amplifier,” Appl. Phys. Lett. 71, 876–878 (1997).
[CrossRef]

van Veggel, F. C. J. M.

S. I. Klink, P. Oude Alink, L. Grave, F. G. A. Peters, J. W. Hofstraat, F. A. J. Geurts, and F. C. J. M. van Veggel, “Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+,” J. Chem. Soc., Perkin Trans. 2 2, 363–372 (2001).
[CrossRef]

L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of lissamine functionalised Nd3+ complexes in polymer waveguides and solution,” Opt. Mater. 14, 101–107 (2000).
[CrossRef]

S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[CrossRef]

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[CrossRef]

Verhoeven, J. W.

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III), and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[CrossRef]

Warburton, T. J.

D. P. Shepherd, C. T. A. Brown, T. J. Warburton, D. C. Hanna, A. C. Tropper, and B. Ferrand, “A diode-pumped, high gain, planar waveguide Nd:Y3Al5O12 amplifier,” Appl. Phys. Lett. 71, 876–878 (1997).
[CrossRef]

Wersig, C.

R. Brinkmann, W. Sohler, H. Suche, and C. Wersig, “Fluorescence and laser operation in single-mode Ti-diffused Nd:MgO:LiNbO3 waveguide structures,” IEEE J. Quantum Electron. 28, 466–470 (1992).
[CrossRef]

Werts, M. H. V.

S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[CrossRef]

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III), and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[CrossRef]

Wolbers, M. P. Oude

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[CrossRef]

Yoo, K. M.

Zang, S-W.

Zheng, G.

R. Gao, C. Koeppen, G. Zheng, and A. F. Garito, “Rare-earth-doped polymers for optical amplification and lasing,” in Rare-Earth-Doped Devices II, S. Honkanen and S. Jiang, eds., Proc. SPIE 3280, 14–22 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. P. Shepherd, C. T. A. Brown, T. J. Warburton, D. C. Hanna, A. C. Tropper, and B. Ferrand, “A diode-pumped, high gain, planar waveguide Nd:Y3Al5O12 amplifier,” Appl. Phys. Lett. 71, 876–878 (1997).
[CrossRef]

Chem. Phys. Lett. (1)

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III), and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[CrossRef]

Crit. Rev. Anal. Chem. (1)

M. Kubista, J. Nygren, A. Elbergali, and R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Brinkmann, W. Sohler, H. Suche, and C. Wersig, “Fluorescence and laser operation in single-mode Ti-diffused Nd:MgO:LiNbO3 waveguide structures,” IEEE J. Quantum Electron. 28, 466–470 (1992).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Peletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[CrossRef]

J. Appl. Phys. (1)

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[CrossRef]

J. Chem. Phys. (1)

E. G. McRae and M. Kasha, “Enhancement of phosphorescence ability upon aggregation of dye molecules,” J. Chem. Phys. 28, 721–722 (1958).
[CrossRef]

J. Chem. Soc., Perkin Trans. 2 (1)

S. I. Klink, P. Oude Alink, L. Grave, F. G. A. Peters, J. W. Hofstraat, F. A. J. Geurts, and F. C. J. M. van Veggel, “Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+,” J. Chem. Soc., Perkin Trans. 2 2, 363–372 (2001).
[CrossRef]

J. Lightwave Technol. (1)

T. Kitagawa, K. Hattori, and Y. Hibino, “Neodymium-doped silica-based planar waveguide laser,” J. Lightwave Technol. 12, 436–442 (1994).
[CrossRef]

J. Phys. Chem. (3)

R. W. Chambers, T. Kijiwara, and D. R. Kearns, “Effect of dimer formation on the electronic absorption and emission spectra of ionic dyes,” J. Phys. Chem. 78, 380–385 (1974).
[CrossRef]

S. Tobita, M. Arakawa, and I. Tanaka, “Electronic relaxation processes of rare-earth chelates of benzoyltrifluoroacetone,” J. Phys. Chem. 88, 2697–2702 (1984).
[CrossRef]

S. Tobita, M. Arakawa, and I. Tanaka, “The paramagnetic effect on the ligand localized S1–T1, intersystem crossing in the rare-earth-metal complexes with methyl salicylate,” J. Phys. Chem. 89, 5649–5654 (1985).
[CrossRef]

J. Phys. Chem. A (1)

S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[CrossRef]

Laser Phys. (1)

J. Hulliger, P. Rogin, and R. Burkhalter, “Waveguides in YLF grown by liquid-phase epitaxy,” Laser Phys. 8, 764–768 (1998).

Opt. Mater. (1)

L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Optical properties of lissamine functionalised Nd3+ complexes in polymer waveguides and solution,” Opt. Mater. 14, 101–107 (2000).
[CrossRef]

Proc. SPIE (2)

R. Gao, C. Koeppen, G. Zheng, and A. F. Garito, “Rare-earth-doped polymers for optical amplification and lasing,” in Rare-Earth-Doped Devices II, S. Honkanen and S. Jiang, eds., Proc. SPIE 3280, 14–22 (1998).
[CrossRef]

R. T. Chen, M. Li, S. Tang, and D. Gerald, “Rare-earth-ions-doped graded-index single-mode polymer waveguide amplifier,” in Technologies for Optical Fiber Communications, G. J. Brown, D. J. Decoster, J. S. La Course, Y. Park, K. D. Pedrotti, and S. R. Sloan eds., Proc. SPIE 2149, 77–78 (1994).
[CrossRef]

Z. Elektrochem. (1)

T. Förster, and E. Koning, “Absorptionsspektren und Fluoreszeneigenschaften konzentrierter Lösungen organischer Farbstoffe,” Z. Elektrochem. 61, 344–348 (1957).

Other (1)

R. H. Woudenberg and T. O. Boonstra, “Polymers comprising a fluorinated carbonate moiety,” International patent, deposited September 3, 1998, WO 9838237.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Two-dimensional representation of lissamine–Nd3+ complex.

Fig. 2
Fig. 2

Schematic energy-level diagram of the lissamine–Nd3+ complex. The arrows indicate the excitation and decay mechanisms. Complexes with and without energy transfer to Nd are shown, and the interaction between the two types is indicated by Wq.

Fig. 3
Fig. 3

Luminescence (top) and absorption (bottom) spectra of the lissamine sensitizer for different illumination times. The excitation wavelength was 488 nm at a pump power of 1 W in a 5-mm spot. The inset shows the peak position in nanometers as a function of the illumination time.

Fig. 4
Fig. 4

Lissamine luminescence intensity (580 nm, solid curve) and Nd3+ luminescence intensity (880 nm, solid squares) as a function of illumination time. Also shown is the absorption coefficient of the film measured at 515 nm during illumination (crosses). A pump excitation wavelength of 515 nm at a power of 1 W and a 1-mm-diameter spot was used.

Fig. 5
Fig. 5

Time-dependent luminescence trace at λ=580 nm for a lissamine–neodymium doped polymer film (solid curve) after excitation with a 1.5 ns (FWHM) pulse at 337 nm and a pulse energy of 20 µJ. The dashed curve shows the system response after excitation.

Metrics