Abstract

The threshold for multilongitudinal-mode emission in inhomogeneously broadened ring lasers is analytically investigated. In the homogeneous limit the multimode instability corresponds to the classical Risken–Nummedal–Graham–Haken instability. It is found that by increasing the inhomogeneous linewidth, the instability threshold is decreased and the growth of high-frequency side modes is favored. In the limit where the population-inversion decay rate γ is much smaller than the polarization decay rate γ (class B lasers), analytical expressions for the instability threshold are found, which are then generalized to three-level lasers for a comparison with experimental results obtained with erbium-doped fiber lasers. It is shown that even in class B lasers a full Maxwell–Bloch description (in opposition to a rate-equations approach) is necessary when the free spectral range of the cavity is less than (γ/γ)1/4γ.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (87)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription