Abstract

We report detailed measurements of the cross-polarized radiation from lens-coupled terahertz dipole antennas, of the sort commonly used in terahertz time-domain spectroscopy. We compare two different antenna geometries and measure both polarization components as a function of emission angle. The qualitative features of these patterns are not specific to one particular emitter geometry but appear to be generally characteristic of these lens-coupled systems. These measurements are used to determine the angle-dependent ellipticity of the emitted terahertz beam. We conclude that a low f-number collection system (f/5) unavoidably results in a beam with a small but measurable ellipticity. This has important implications for any measurements in which a purely linearly polarized wave is required.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Nuss and J. Orenstein, “Terahertz time-domain spectroscopy (THz-TDS),” in Millimeter and Submillimeter Wave Spectroscopy of Solids, G. Grüner, ed. (Springer-Verlag, Heidelberg, 1998), pp. 7–50.
  2. C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
    [CrossRef]
  3. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
    [CrossRef]
  4. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
    [CrossRef]
  5. J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
    [CrossRef]
  6. M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
    [CrossRef]
  7. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996).
    [CrossRef]
  8. C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
    [CrossRef]
  9. A. Kaplan, “Diffraction-induced transformation of near-cycle and subcycle pulses,” J. Opt. Soc. Am. B 15, 951–956 (1998).
    [CrossRef]
  10. A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
    [CrossRef]
  11. S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025–2028 (1999).
    [CrossRef]
  12. T. J. Bensky, G. Haeffler, and R. R. Jones, “Ionization of Na Rydberg atoms by subpicosecond quarter-cycle circularly polarized pulses,” Phys. Rev. Lett. 79, 2018–2021 (1997).
    [CrossRef]
  13. D. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
    [CrossRef]
  14. F. Garet, L. Duvillaret, and J.-L. Coutaz, “Evidence of frequency dependent THz beam polarization in time-domain spectroscopy,” Proc. SPIE 3617, 30–37 (1999).
    [CrossRef]
  15. R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
    [CrossRef]
  16. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2079 (1997).
    [CrossRef]
  17. J. Shan, J. Dadap, and T. F. Heinz, “Single-cycle pulses of circularly polarized electromagnetic radiation,” Opt. Lett. (to be published).
  18. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
    [CrossRef]
  19. J. V. Rudd, J. L. Johnson, and D. M. Mittleman, “Quadrupole radiation from terahertz dipoles,” Opt. Lett. 25, 1556–1558 (2000).
    [CrossRef]
  20. N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
    [CrossRef]
  21. P. Jepsen and S. R. Keiding, “Radiation patterns from lens-coupled terahertz antennas,” Opt. Lett. 20, 807–809 (1995).
    [CrossRef] [PubMed]
  22. R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
    [CrossRef]
  23. M. T. Reiten, D. Grischkowsky, and R. A. Cheville, “Properties of surface waves determined via bistatic terahertz impulse ranging,” Appl. Phys. Lett. 78, 1146 (2001).
    [CrossRef]
  24. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
    [CrossRef]
  25. Z. Jiang and X.-C. Zhang, “Measurement of spatio-temporal terahertz field distribution by using chirped pulse technology,” IEEE J. Quantum Electron. 36, 1214–1222 (2000).
    [CrossRef]
  26. M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
    [CrossRef]
  27. A. B. Ruffin, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, T. B. Norris, and J. V. Rudd, “Time reversal and object reconstruction with single-cycle pulses,” Opt. Lett. 26, 681–683 (2001).
    [CrossRef]
  28. T. Dorney, J. L. Johnson, J. V. Rudd, R. G. Baraniuk, W. W. Symes, and D. M. Mittleman, “Terahertz reflection imaging using Kirchoff migration,” Opt. Lett. (to be published).
  29. J. V. Rudd and D. M. Mittleman, “Angular emission patterns from optically gated lens-coupled terahertz antennas,” IEEE Trans. Microwave Theory Tech. (to be published).
  30. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1719 (1995).
    [CrossRef] [PubMed]
  31. D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10, pp. 1–90.
  32. P. U. Jepsen, “THz radiation patterns from dipole antennas and guided ultrafast pulse propagation,” Master’s thesis (Fysisk Institut, Odense Universitet, Odense, Denmark, 1994).
  33. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979).
    [CrossRef]
  34. A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” J. Opt. Soc. Am. A 17, 74–83 (2000).
    [CrossRef]
  35. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fat-tinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  36. M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965).
  37. G. H. Brown and O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).
  38. R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
    [CrossRef]
  39. K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
    [CrossRef]
  40. H. Jasik, Antenna Engineering Handbook, 1st ed. (McGraw-Hill, New York, 1961).

2001

M. T. Reiten, D. Grischkowsky, and R. A. Cheville, “Properties of surface waves determined via bistatic terahertz impulse ranging,” Appl. Phys. Lett. 78, 1146 (2001).
[CrossRef]

A. B. Ruffin, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, T. B. Norris, and J. V. Rudd, “Time reversal and object reconstruction with single-cycle pulses,” Opt. Lett. 26, 681–683 (2001).
[CrossRef]

2000

J. V. Rudd, J. L. Johnson, and D. M. Mittleman, “Quadrupole radiation from terahertz dipoles,” Opt. Lett. 25, 1556–1558 (2000).
[CrossRef]

R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
[CrossRef]

A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” J. Opt. Soc. Am. A 17, 74–83 (2000).
[CrossRef]

J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

Z. Jiang and X.-C. Zhang, “Measurement of spatio-temporal terahertz field distribution by using chirped pulse technology,” IEEE J. Quantum Electron. 36, 1214–1222 (2000).
[CrossRef]

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[CrossRef]

1999

F. Garet, L. Duvillaret, and J.-L. Coutaz, “Evidence of frequency dependent THz beam polarization in time-domain spectroscopy,” Proc. SPIE 3617, 30–37 (1999).
[CrossRef]

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025–2028 (1999).
[CrossRef]

1998

A. Kaplan, “Diffraction-induced transformation of near-cycle and subcycle pulses,” J. Opt. Soc. Am. B 15, 951–956 (1998).
[CrossRef]

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

1997

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2079 (1997).
[CrossRef]

T. J. Bensky, G. Haeffler, and R. R. Jones, “Ionization of Na Rydberg atoms by subpicosecond quarter-cycle circularly polarized pulses,” Phys. Rev. Lett. 79, 2018–2021 (1997).
[CrossRef]

D. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

1996

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

1995

1994

K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
[CrossRef]

1992

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

1990

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fat-tinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

1989

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

1988

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

1987

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

1979

1952

G. H. Brown and O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Auston, D. H.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

Bensky, T. J.

T. J. Bensky, G. Haeffler, and R. R. Jones, “Ionization of Na Rydberg atoms by subpicosecond quarter-cycle circularly polarized pulses,” Phys. Rev. Lett. 79, 2018–2021 (1997).
[CrossRef]

Bieler, M.

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[CrossRef]

Brener, I.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2079 (1997).
[CrossRef]

Brown, G. H.

G. H. Brown and O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Cai, Y.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2079 (1997).
[CrossRef]

Calawa, S.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

Cheville, R. A.

M. T. Reiten, D. Grischkowsky, and R. A. Cheville, “Properties of surface waves determined via bistatic terahertz impulse ranging,” Appl. Phys. Lett. 78, 1146 (2001).
[CrossRef]

R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
[CrossRef]

Compton, R. C.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Coutaz, J.-L.

F. Garet, L. Duvillaret, and J.-L. Coutaz, “Evidence of frequency dependent THz beam polarization in time-domain spectroscopy,” Proc. SPIE 3617, 30–37 (1999).
[CrossRef]

Cunningham, J.

D. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

Decker, J.

Dinatale, W. F.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

Duerr, E. K.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

Duvillaret, L.

F. Garet, L. Duvillaret, and J.-L. Coutaz, “Evidence of frequency dependent THz beam polarization in time-domain spectroscopy,” Proc. SPIE 3617, 30–37 (1999).
[CrossRef]

Fattinger, C.

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

Fat-tinger, C.

Federici, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2079 (1997).
[CrossRef]

Feng, S.

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025–2028 (1999).
[CrossRef]

Froberg, N. M.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

Garet, F.

F. Garet, L. Duvillaret, and J.-L. Coutaz, “Evidence of frequency dependent THz beam polarization in time-domain spectroscopy,” Proc. SPIE 3617, 30–37 (1999).
[CrossRef]

Geva, M.

D. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

Grischkowsky, D.

M. T. Reiten, D. Grischkowsky, and R. A. Cheville, “Properties of surface waves determined via bistatic terahertz impulse ranging,” Appl. Phys. Lett. 78, 1146 (2001).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
[CrossRef]

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fat-tinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

Grischkowsky, D. R.

R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
[CrossRef]

Gürtler, A.

Haeffler, G.

T. J. Bensky, G. Haeffler, and R. R. Jones, “Ionization of Na Rydberg atoms by subpicosecond quarter-cycle circularly polarized pulses,” Phys. Rev. Lett. 79, 2018–2021 (1997).
[CrossRef]

Hein, G.

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[CrossRef]

Helm, H.

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Hu, B. B.

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1719 (1995).
[CrossRef] [PubMed]

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

Hunsche, S.

Ippen, E. P.

Jacobsen, R. H.

Jepsen, P.

Jepsen, P. U.

Jiang, Z.

Z. Jiang and X.-C. Zhang, “Measurement of spatio-temporal terahertz field distribution by using chirped pulse technology,” IEEE J. Quantum Electron. 36, 1214–1222 (2000).
[CrossRef]

Johnson, J. L.

Jones, R. R.

T. J. Bensky, G. Haeffler, and R. R. Jones, “Ionization of Na Rydberg atoms by subpicosecond quarter-cycle circularly polarized pulses,” Phys. Rev. Lett. 79, 2018–2021 (1997).
[CrossRef]

Kaplan, A.

Keiding, S.

Keiding, S. R.

Koch, M.

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[CrossRef]

Kuhl, J.

C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

Le Hors, L.

Leitenstorfer, A.

Lopata, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2079 (1997).
[CrossRef]

Ludwig, C.

C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

Lukosz, W.

Maloney, J. G.

K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
[CrossRef]

McGowan, R. W.

R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
[CrossRef]

McIntosh, K. A.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

McPhedran, R. C.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Mittleman, D.

D. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

Mittleman, D. M.

J. V. Rudd, J. L. Johnson, and D. M. Mittleman, “Quadrupole radiation from terahertz dipoles,” Opt. Lett. 25, 1556–1558 (2000).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Molvar, K. A.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

Norris, T. B.

Nuss, M. C.

S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025–2028 (1999).
[CrossRef]

D. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1719 (1995).
[CrossRef] [PubMed]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

Pfeiffer, L.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2079 (1997).
[CrossRef]

Pierz, K.

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[CrossRef]

Popovic, Z.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Rebeiz, G. M.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Reiten, M. T.

M. T. Reiten, D. Grischkowsky, and R. A. Cheville, “Properties of surface waves determined via bistatic terahertz impulse ranging,” Appl. Phys. Lett. 78, 1146 (2001).
[CrossRef]

Rudd, J. V.

A. B. Ruffin, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, T. B. Norris, and J. V. Rudd, “Time reversal and object reconstruction with single-cycle pulses,” Opt. Lett. 26, 681–683 (2001).
[CrossRef]

J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

J. V. Rudd, J. L. Johnson, and D. M. Mittleman, “Quadrupole radiation from terahertz dipoles,” Opt. Lett. 25, 1556–1558 (2000).
[CrossRef]

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

Ruffin, A. B.

A. B. Ruffin, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, T. B. Norris, and J. V. Rudd, “Time reversal and object reconstruction with single-cycle pulses,” Opt. Lett. 26, 681–683 (2001).
[CrossRef]

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

Rutledge, D. B.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Sanchez-Palencia, L.

Shlager, K. L.

K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
[CrossRef]

Siegner, U.

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[CrossRef]

Smith, G. S.

K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
[CrossRef]

Smith, P. R.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

Tong, P. P.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

van Exter, M.

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fat-tinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

Verghese, S.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

Warmuth, M.

J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

Whitaker, J. F.

A. B. Ruffin, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, T. B. Norris, and J. V. Rudd, “Time reversal and object reconstruction with single-cycle pulses,” Opt. Lett. 26, 681–683 (2001).
[CrossRef]

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

Winful, H. G.

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025–2028 (1999).
[CrossRef]

Winnewisser, C.

Woodward, O. M.

G. H. Brown and O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Wynn, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2079 (1997).
[CrossRef]

Zhang, X.-C.

Z. Jiang and X.-C. Zhang, “Measurement of spatio-temporal terahertz field distribution by using chirped pulse technology,” IEEE J. Quantum Electron. 36, 1214–1222 (2000).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

Zimdars, D.

J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

Appl. Phys. Lett.

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

D. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2079 (1997).
[CrossRef]

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

M. T. Reiten, D. Grischkowsky, and R. A. Cheville, “Properties of surface waves determined via bistatic terahertz impulse ranging,” Appl. Phys. Lett. 78, 1146 (2001).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[CrossRef]

IEEE J. Quantum Electron.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992).
[CrossRef]

Z. Jiang and X.-C. Zhang, “Measurement of spatio-temporal terahertz field distribution by using chirped pulse technology,” IEEE J. Quantum Electron. 36, 1214–1222 (2000).
[CrossRef]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

IEEE Trans. Antennas Propag.

R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propag. 42, 975–982 (1994).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. Lett.

A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999).
[CrossRef]

T. J. Bensky, G. Haeffler, and R. R. Jones, “Ionization of Na Rydberg atoms by subpicosecond quarter-cycle circularly polarized pulses,” Phys. Rev. Lett. 79, 2018–2021 (1997).
[CrossRef]

Proc. SPIE

J. V. Rudd, D. Zimdars, and M. Warmuth, “Compact, fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

F. Garet, L. Duvillaret, and J.-L. Coutaz, “Evidence of frequency dependent THz beam polarization in time-domain spectroscopy,” Proc. SPIE 3617, 30–37 (1999).
[CrossRef]

RCA Rev.

G. H. Brown and O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Other

H. Jasik, Antenna Engineering Handbook, 1st ed. (McGraw-Hill, New York, 1961).

T. Dorney, J. L. Johnson, J. V. Rudd, R. G. Baraniuk, W. W. Symes, and D. M. Mittleman, “Terahertz reflection imaging using Kirchoff migration,” Opt. Lett. (to be published).

J. V. Rudd and D. M. Mittleman, “Angular emission patterns from optically gated lens-coupled terahertz antennas,” IEEE Trans. Microwave Theory Tech. (to be published).

D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10, pp. 1–90.

P. U. Jepsen, “THz radiation patterns from dipole antennas and guided ultrafast pulse propagation,” Master’s thesis (Fysisk Institut, Odense Universitet, Odense, Denmark, 1994).

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965).

J. Shan, J. Dadap, and T. F. Heinz, “Single-cycle pulses of circularly polarized electromagnetic radiation,” Opt. Lett. (to be published).

M. C. Nuss and J. Orenstein, “Terahertz time-domain spectroscopy (THz-TDS),” in Millimeter and Submillimeter Wave Spectroscopy of Solids, G. Grüner, ed. (Springer-Verlag, Heidelberg, 1998), pp. 7–50.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the setup used in these measurements. The system is a conventional THz time-domain spectrometer as described, for example, in Ref. 4, except that both photoconductive antennas are fiber coupled, as shown. This permits easy repositioning of the receiver without loss of optical alignment or temporal synchronization.

Fig. 2
Fig. 2

Photograph of the experimental setup, showing the transmitter and receiver mounts. In this picture the receiver is set at an angle of ∼30° with respect to the z axis defined in Fig. 1. The wire-grid polarizer is not shown in this figure.

Fig. 3
Fig. 3

Schematics of the two transmitter antennas used in these measurements: (a) a dipole antenna integrated into a coplanar strip line, with a field singularity on one side; (b) a bow-tie antenna. In (b) the white crosses mark the approximate locations of the wire bonds connecting the antenna to the external bias source. In both (a) and (b) the arrows indicate the flow of current envisioned as the source of the quadrupole radiation as described in the text.

Fig. 4
Fig. 4

Dashed curve shows the radiation pattern for a point quadrupole source in free space, arranged in a plane perpendicular to θ=0°, as described in the text. The solid curve shows the pattern for the same source lying on the interface between air and a silicon substrate (with n=3.418). The small kink in this angular pattern at θ=±17° arise from total internal reflection at the planar air–dielectric interface.

Fig. 5
Fig. 5

Gray-scale images showing the measured THz waveforms emitted from the dipole antenna shown in Fig. 3(a), as a function of delay and angle in the E plane of the antenna: (a) p-polarized THz pulses; (b) s-polarized THz pulses. The gray scale in (b) has a dynamic range that is 10% of the gray scale in (a), illustrating the relative strength of the p-polarized radiation. In (b) the antisymmetric pattern with respect to θ=0° is evident in the phase reversal of the waveforms.

Fig. 6
Fig. 6

Spectral amplitude of four specific waveforms, selected from the data of Fig. 5, plotted on a log scale. The solid curves represent the results for θ=0° (the optic axis), and the dotted curves show θ=6°.

Fig. 7
Fig. 7

(a) s-polarized waveforms from the dipole emitter, measured at θ=±6°, on either side of the optic axis. These two waveforms are almost negatives of each other, with a small relative temporal shift. (b) The difference in the spectral phase of the two waveforms in (a), as a function of frequency. This difference is slightly less than π, the value expected for an ideal quadrupole radiator.

Fig. 8
Fig. 8

Gray-scale images showing the amplitude spectrum of the emitted radiation as a function of frequency and angle: (a) the dipole antenna; (b) the bow-tie antenna. In (b) the data at positive angles have been duplicated at negative angles, to facilitate comparisons between the two antenna geometries.

Fig. 9
Fig. 9

Fresnel–Kirchoff diffraction calculation, simulating the results of Fig. 8, performed as outlined in the text.

Fig. 10
Fig. 10

Comparisons between experimental and simulated angular emission patterns at three representative frequencies within the bandwidth of the emitted radiation. The solid circles correspond to the results for the dipole antenna, and the open squares show the results for the bow-tie antenna. For the bow-tie antenna the data at positive angles have been duplicated at negative angles, to facilitate comparisons between the two antenna geometries. The dashed curves are the simulated results at each frequency. These have each been scaled by a multiplicative constant but otherwise contain no adjustable parameters.

Fig. 11
Fig. 11

Parametric plots displaying the pattern traced by the electric field vector during the time when the field has a significant amplitude, for the case of the bow-tie emitter. Adjacent data points are separated by a time step of 50 fs. The motion is largely clockwise, as indicated by the arrows. The three curves represent three different angles relative to the optic axis: filled squares, 6°, crosses, 10°; open circles, 14°. Note that the range of the vertical axis is 10% of the range of the horizontal axis. The inset shows the data for 6° on axes with equal ranges, to represent the ellipticity of the radiation on a realistic scale.

Fig. 12
Fig. 12

Axial ratio of the elliptical THz pulse, as a function of emission angle. An axial ratio of 0 dB corresponds to circular polarization, and linear polarization corresponds to an infinite ratio. The filled squares show the result for the dipole antenna, and the open circles show the result for the bow-tie antenna. For the bow-tie antenna the data at positive angles have been duplicated at negative angles, to facilitate comparisons between the two antenna geometries.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(θ, ϕ)sin θ cos θ sin 2ϕθˆ+sin θ cos 2ϕφˆ.
E(θ, ϕ)sin θ cos θ sin 2ϕ(1+r)θˆ
+sin θ cos 2ϕ(1+r)φˆ.
E(r)dAE(r0)
×exp(ikr)r[cos(n, r)-nSi cos(n, r0)].

Metrics