Abstract

Space-resolved soft-x-ray spectra of laser-produced plasmas of pure-Sn metal and its oxides were measured in the spectral range 7–23 nm. We established a comprehensive spectroscopic database of the emission characteristics of the transition array of highly ionized Sn near 13.5-nm wavelength by varying the incident laser energy and the angle between the observation axis and the target normal. We examined the narrow spectral bandwidth of the transition array obtained by use of a gas-mixed fine-particle (SnO2 powder) target proposed by Matsui et al. [Proc. SPIE 3886, 610 (2000) ]. We selected pure-Sn metal, SnO and SnO2 powder, and SnO2 thin-film targets with which to clarify the roles of additional constituent ions, such as O and Ar, in plasmas of the gas-mixed fine-particle targets. The space-resolved spectra show that the bandwidth of the transition array broadens dramatically and that the wavelength at peak intensity shifts slightly toward longer wavelengths with increasing distance from the original target surface or with decreasing incident laser energy. The origins of the broadening and the wavelength shift can be explained in terms of an increase in the range of ion stages that contribute to the transition array and in terms of transfer of the dominant ion stages to lower stages. The narrow bandwidth of the gas-mixed fine-particle target is probably due to the presence of a narrow range of moderate ion stages.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Silfvast, M. C. Richardson, H. Bender, A. Hanzo, V. Yanovsky, F. Jin, and T. Thorpe, “Laser-produced plasmas for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 10, 3126–3133 (1992).
    [CrossRef]
  2. R. L. Kauffman, D. W. Phillion, and R. C. Spitzer, “X-ray production ~13 nm from laser-produced plasmas for projection x-ray lithography applications,” Appl. Opt. 32, 6897–6900 (1993).
    [CrossRef] [PubMed]
  3. R. C. Spitzer, T. J. Orzechowski, D. W. Phillion, R. L. Kauffman, and C. Cerjan, “Conversion efficiencies from laser-plasmas in the extreme ultraviolet regime,” J. Appl. Phys. 79, 2251–2258 (1996).
    [CrossRef]
  4. G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
    [CrossRef]
  5. G. O’Sullivan and P. K. Carroll, “4d–4f emission resonance in laser-produced plasmas,” J. Opt. Soc. Am. 71, 227–230 (1981).
    [CrossRef]
  6. G. M. Zeng, H. Daido, K. Murai, Y. Kato, M. Nakatsuka, and S. Nakai, “Line x-ray emissions from highly ionized plasmas of various species irradiated by compact solid-state lasers,” J. Appl. Phys. 72, 3355–3363 (1992); G. M. Zeng, H. Daido, T. Nishikawa, H. Takabe, S. Nakayama, H. Aritome, K. Murai, Y. Kato, M. Nakatsuka, and S. Nakai, “Soft x-ray spectra of highly ionized elements with atomic numbers ranging from 57 to 82 produced by compact lasers,” J. Appl. Phys. 75, 1923–1930 (1994).
    [CrossRef]
  7. N. M. Ceglio, A. M. Hawryluk, and G. E. Sommargren, “Front-end design issues in soft x-ray projection lithography,” Appl. Opt. 32, 7050–7056 (1993).
    [CrossRef] [PubMed]
  8. D. G. Stearns, R. S. Rosen, and S. P. Vernon, “Multilayer mirror technology for soft-x-ray projection lithography,” Appl. Opt. 32, 6952–6960 (1993).
    [CrossRef] [PubMed]
  9. J. M. Bridges, C. L. Cromer, and T. J. McIlrath, “Investigation of a laser-produced plasma VUV light source,” Appl. Opt. 25, 2208–2214 (1986).
    [CrossRef] [PubMed]
  10. H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
    [CrossRef]
  11. A. Shimoura, S. Amano, S. Miyamoto, and T. Mochizuki, “X-ray generation in cryogenic targets irradiated by a 1-μm pulsed laser,” Appl. Phys. Lett. 72, 164–166 (1998).
    [CrossRef]
  12. M. Richardson, W. T. Silfvast, H. A. Bender, A. Hanzo, V. P. Yanovsky, F. Jin, and J. Thorpe, “Characterization and control of laser plasma flux parameters for soft x-ray projection lithography,” Appl. Opt. 32, 6901–6910 (1993).
    [CrossRef] [PubMed]
  13. T. Matsui and N. Kogawa, “Laser plasma x-ray source using a gas target of mixed fine particles,” in High-Power Lasers in Energy Engineering, K. Mima, G. L. Kulcinski, and W. Hogan, eds., Proc. SPIE 3886, 610–617 (2000).
    [CrossRef]
  14. P. K. Carroll and G. O’Sullivan, “Ground-state configurations of ionic species I through XVI for Z=57–74 and the interpretation of 4d–4f emission resonances in laser-produced plasmas,” Phys. Rev. A 25, 275–286 (1982).
    [CrossRef]
  15. G. O’Sullivan and R. Faulkner, “Tunable narrowband soft x-ray source for projection lithography,” Opt. Eng. 33, 3978–3983 (1994).
    [CrossRef]
  16. G. O’Sullivan, “The spectra of laser produced plasmas with lanthanide targets,” in Giant Resonances in Atoms, Molecules and Solids, J. P. Connerade, J. M. Esteva, and R. Karnatak, eds., Vol. 151 of NATO Advanced Study Institute Series B: Physics (Plenum, New York, 1987), pp. 505–532.
  17. T. Kita, T. Harada, N. Nakano, and H. Kuroda, “Mechanically ruled aberration-corrected concave gratings for a flat-field grazing-incidence spectrograph,” Appl. Opt. 22, 512–513 (1983).
    [CrossRef] [PubMed]
  18. I. W. Choi, J. U. Lee, and C. H. Nam, “Space-resolving flat-field extreme ultraviolet spectrograph system and its aberration analysis with wave-front aberration,” Appl. Opt. 36, 1457–1466 (1997).
    [CrossRef] [PubMed]
  19. R. L. Kelly, “Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton,” J. Phys. Chem. Ref. Data Suppl. 1 16, 223 (1987).
  20. R. Fabbro, C. Max, and E. Fabre, “Planar laser-driven ablation: effect of inhibited electron thermal conduction,” Phys. Fluids 28, 1463–1481 (1985).
    [CrossRef]
  21. J. D. Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington, D.C., 1998), p. 29.
  22. H. Takabe and T. Ishii, “Effect of nonuniform implosion on high-gain inertial confinement fusion targets,” Jpn. J. Appl. Phys. 32, 5675–5680 (1993).
    [CrossRef]
  23. P. Mandelbaum, M. Finkenthal, J. L. Schwob, and M. Klapisch, “Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70–100-Å range,” Phys. Rev. A 35, 5051–5059 (1987).
    [CrossRef] [PubMed]
  24. J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Transition arrays in the spectra of ionized atoms,” Adv. At. Mol. Phys. 23, 131–195 (1988).
    [CrossRef]
  25. W. Svendsen and G. O’Sullivan, “Statistics and characteristics of XUV transition arrays from laser-produced plasmas of the elements tin through iodine,” Phys. Rev. A 50, 3710–3718 (1994).
    [CrossRef] [PubMed]
  26. C. Cerjan, “X-ray plasma source design simulations,” Appl. Opt. 32, 6911–6913 (1993).
    [CrossRef] [PubMed]
  27. A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57, 276–282 (1998).
    [CrossRef]
  28. B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
    [CrossRef]
  29. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge U. Press, Cambridge, 1997), Chap. 8, p. 223.
  30. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo absorption, scattering, and reflection E= 100–2000 eV Z=1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
    [CrossRef]
  31. D. P. Gaines, R. C. Spitzer, N. M. Ceglio, M. Krumrey, and G. Ulm, “Radiation hardness of molybdenum silicon multilayers designed for use in a soft-x-ray projection lithography system,” Appl. Opt. 32, 6991–6998 (1993).
    [CrossRef] [PubMed]

2000

T. Matsui and N. Kogawa, “Laser plasma x-ray source using a gas target of mixed fine particles,” in High-Power Lasers in Energy Engineering, K. Mima, G. L. Kulcinski, and W. Hogan, eds., Proc. SPIE 3886, 610–617 (2000).
[CrossRef]

1999

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

1998

A. Shimoura, S. Amano, S. Miyamoto, and T. Mochizuki, “X-ray generation in cryogenic targets irradiated by a 1-μm pulsed laser,” Appl. Phys. Lett. 72, 164–166 (1998).
[CrossRef]

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57, 276–282 (1998).
[CrossRef]

1997

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

I. W. Choi, J. U. Lee, and C. H. Nam, “Space-resolving flat-field extreme ultraviolet spectrograph system and its aberration analysis with wave-front aberration,” Appl. Opt. 36, 1457–1466 (1997).
[CrossRef] [PubMed]

1996

R. C. Spitzer, T. J. Orzechowski, D. W. Phillion, R. L. Kauffman, and C. Cerjan, “Conversion efficiencies from laser-plasmas in the extreme ultraviolet regime,” J. Appl. Phys. 79, 2251–2258 (1996).
[CrossRef]

1994

G. O’Sullivan and R. Faulkner, “Tunable narrowband soft x-ray source for projection lithography,” Opt. Eng. 33, 3978–3983 (1994).
[CrossRef]

W. Svendsen and G. O’Sullivan, “Statistics and characteristics of XUV transition arrays from laser-produced plasmas of the elements tin through iodine,” Phys. Rev. A 50, 3710–3718 (1994).
[CrossRef] [PubMed]

1993

1992

W. T. Silfvast, M. C. Richardson, H. Bender, A. Hanzo, V. Yanovsky, F. Jin, and T. Thorpe, “Laser-produced plasmas for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 10, 3126–3133 (1992).
[CrossRef]

1991

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

1988

J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Transition arrays in the spectra of ionized atoms,” Adv. At. Mol. Phys. 23, 131–195 (1988).
[CrossRef]

1987

P. Mandelbaum, M. Finkenthal, J. L. Schwob, and M. Klapisch, “Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70–100-Å range,” Phys. Rev. A 35, 5051–5059 (1987).
[CrossRef] [PubMed]

R. L. Kelly, “Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton,” J. Phys. Chem. Ref. Data Suppl. 1 16, 223 (1987).

1986

1985

R. Fabbro, C. Max, and E. Fabre, “Planar laser-driven ablation: effect of inhibited electron thermal conduction,” Phys. Fluids 28, 1463–1481 (1985).
[CrossRef]

1983

1982

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo absorption, scattering, and reflection E= 100–2000 eV Z=1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

P. K. Carroll and G. O’Sullivan, “Ground-state configurations of ionic species I through XVI for Z=57–74 and the interpretation of 4d–4f emission resonances in laser-produced plasmas,” Phys. Rev. A 25, 275–286 (1982).
[CrossRef]

1981

Amano, S.

A. Shimoura, S. Amano, S. Miyamoto, and T. Mochizuki, “X-ray generation in cryogenic targets irradiated by a 1-μm pulsed laser,” Appl. Phys. Lett. 72, 164–166 (1998).
[CrossRef]

Bartnik, A.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Bastiaensen, R. K. F. J.

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57, 276–282 (1998).
[CrossRef]

Bauche, J.

J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Transition arrays in the spectra of ionized atoms,” Adv. At. Mol. Phys. 23, 131–195 (1988).
[CrossRef]

Bauche-Arnoult, C.

J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Transition arrays in the spectra of ionized atoms,” Adv. At. Mol. Phys. 23, 131–195 (1988).
[CrossRef]

Bender, H.

W. T. Silfvast, M. C. Richardson, H. Bender, A. Hanzo, V. Yanovsky, F. Jin, and T. Thorpe, “Laser-produced plasmas for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 10, 3126–3133 (1992).
[CrossRef]

Bender, H. A.

Berger, K. W.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Bijkerk, F.

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57, 276–282 (1998).
[CrossRef]

Bjorkholm, J. E.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Bokor, J.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Bridges, J. M.

Carroll, P. K.

P. K. Carroll and G. O’Sullivan, “Ground-state configurations of ionic species I through XVI for Z=57–74 and the interpretation of 4d–4f emission resonances in laser-produced plasmas,” Phys. Rev. A 25, 275–286 (1982).
[CrossRef]

G. O’Sullivan and P. K. Carroll, “4d–4f emission resonance in laser-produced plasmas,” J. Opt. Soc. Am. 71, 227–230 (1981).
[CrossRef]

Ceglio, N. M.

Cerjan, C.

R. C. Spitzer, T. J. Orzechowski, D. W. Phillion, R. L. Kauffman, and C. Cerjan, “Conversion efficiencies from laser-plasmas in the extreme ultraviolet regime,” J. Appl. Phys. 79, 2251–2258 (1996).
[CrossRef]

C. Cerjan, “X-ray plasma source design simulations,” Appl. Opt. 32, 6911–6913 (1993).
[CrossRef] [PubMed]

Choi, I. W.

Churilov, S. S.

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57, 276–282 (1998).
[CrossRef]

Cromer, C. L.

Daido, H.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Demir, A.

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Fabbro, R.

R. Fabbro, C. Max, and E. Fabre, “Planar laser-driven ablation: effect of inhibited electron thermal conduction,” Phys. Fluids 28, 1463–1481 (1985).
[CrossRef]

Fabre, E.

R. Fabbro, C. Max, and E. Fabre, “Planar laser-driven ablation: effect of inhibited electron thermal conduction,” Phys. Fluids 28, 1463–1481 (1985).
[CrossRef]

Faulkner, R.

G. O’Sullivan and R. Faulkner, “Tunable narrowband soft x-ray source for projection lithography,” Opt. Eng. 33, 3978–3983 (1994).
[CrossRef]

Fiedorowicz, H.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Finkenthal, M.

P. Mandelbaum, M. Finkenthal, J. L. Schwob, and M. Klapisch, “Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70–100-Å range,” Phys. Rev. A 35, 5051–5059 (1987).
[CrossRef] [PubMed]

Freeman, R. R.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo absorption, scattering, and reflection E= 100–2000 eV Z=1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Gaines, D. P.

Haney, S. J.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Hanzo, A.

M. Richardson, W. T. Silfvast, H. A. Bender, A. Hanzo, V. P. Yanovsky, F. Jin, and J. Thorpe, “Characterization and control of laser plasma flux parameters for soft x-ray projection lithography,” Appl. Opt. 32, 6901–6910 (1993).
[CrossRef] [PubMed]

W. T. Silfvast, M. C. Richardson, H. Bender, A. Hanzo, V. Yanovsky, F. Jin, and T. Thorpe, “Laser-produced plasmas for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 10, 3126–3133 (1992).
[CrossRef]

Harada, T.

Hawryluk, A. M.

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo absorption, scattering, and reflection E= 100–2000 eV Z=1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Ishii, T.

H. Takabe and T. Ishii, “Effect of nonuniform implosion on high-gain inertial confinement fusion targets,” Jpn. J. Appl. Phys. 32, 5675–5680 (1993).
[CrossRef]

Jamelot, G.

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Jewell, T. E.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Jin, F.

M. Richardson, W. T. Silfvast, H. A. Bender, A. Hanzo, V. P. Yanovsky, F. Jin, and J. Thorpe, “Characterization and control of laser plasma flux parameters for soft x-ray projection lithography,” Appl. Opt. 32, 6901–6910 (1993).
[CrossRef] [PubMed]

W. T. Silfvast, M. C. Richardson, H. Bender, A. Hanzo, V. Yanovsky, F. Jin, and T. Thorpe, “Laser-produced plasmas for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 10, 3126–3133 (1992).
[CrossRef]

Kálal, M.

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Kato, Y.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Kauffman, R. L.

R. C. Spitzer, T. J. Orzechowski, D. W. Phillion, R. L. Kauffman, and C. Cerjan, “Conversion efficiencies from laser-plasmas in the extreme ultraviolet regime,” J. Appl. Phys. 79, 2251–2258 (1996).
[CrossRef]

R. L. Kauffman, D. W. Phillion, and R. C. Spitzer, “X-ray production ~13 nm from laser-produced plasmas for projection x-ray lithography applications,” Appl. Opt. 32, 6897–6900 (1993).
[CrossRef] [PubMed]

Kelly, R. L.

R. L. Kelly, “Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton,” J. Phys. Chem. Ref. Data Suppl. 1 16, 223 (1987).

Kita, T.

Klapisch, M.

J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Transition arrays in the spectra of ionized atoms,” Adv. At. Mol. Phys. 23, 131–195 (1988).
[CrossRef]

P. Mandelbaum, M. Finkenthal, J. L. Schwob, and M. Klapisch, “Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70–100-Å range,” Phys. Rev. A 35, 5051–5059 (1987).
[CrossRef] [PubMed]

Klisnick, A.

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Kmetik, V.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Kogawa, N.

T. Matsui and N. Kogawa, “Laser plasma x-ray source using a gas target of mixed fine particles,” in High-Power Lasers in Energy Engineering, K. Mima, G. L. Kulcinski, and W. Hogan, eds., Proc. SPIE 3886, 610–617 (2000).
[CrossRef]

Králiková, B.

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Krumrey, M.

Kubiak, G. D.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Kuroda, H.

Lee, J. U.

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo absorption, scattering, and reflection E= 100–2000 eV Z=1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Malinowski, M. E.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Mandelbaum, P.

P. Mandelbaum, M. Finkenthal, J. L. Schwob, and M. Klapisch, “Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70–100-Å range,” Phys. Rev. A 35, 5051–5059 (1987).
[CrossRef] [PubMed]

Mansfield, W. M.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Matsui, T.

T. Matsui and N. Kogawa, “Laser plasma x-ray source using a gas target of mixed fine particles,” in High-Power Lasers in Energy Engineering, K. Mima, G. L. Kulcinski, and W. Hogan, eds., Proc. SPIE 3886, 610–617 (2000).
[CrossRef]

Matsumura, M.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Max, C.

R. Fabbro, C. Max, and E. Fabre, “Planar laser-driven ablation: effect of inhibited electron thermal conduction,” Phys. Fluids 28, 1463–1481 (1985).
[CrossRef]

McIlrath, T. J.

Miyamoto, S.

A. Shimoura, S. Amano, S. Miyamoto, and T. Mochizuki, “X-ray generation in cryogenic targets irradiated by a 1-μm pulsed laser,” Appl. Phys. Lett. 72, 164–166 (1998).
[CrossRef]

Mocek, T.

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Mochizuki, T.

A. Shimoura, S. Amano, S. Miyamoto, and T. Mochizuki, “X-ray generation in cryogenic targets irradiated by a 1-μm pulsed laser,” Appl. Phys. Lett. 72, 164–166 (1998).
[CrossRef]

Nakano, N.

Nakayama, T.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Nam, C. H.

O’Sullivan, G.

W. Svendsen and G. O’Sullivan, “Statistics and characteristics of XUV transition arrays from laser-produced plasmas of the elements tin through iodine,” Phys. Rev. A 50, 3710–3718 (1994).
[CrossRef] [PubMed]

G. O’Sullivan and R. Faulkner, “Tunable narrowband soft x-ray source for projection lithography,” Opt. Eng. 33, 3978–3983 (1994).
[CrossRef]

P. K. Carroll and G. O’Sullivan, “Ground-state configurations of ionic species I through XVI for Z=57–74 and the interpretation of 4d–4f emission resonances in laser-produced plasmas,” Phys. Rev. A 25, 275–286 (1982).
[CrossRef]

G. O’Sullivan and P. K. Carroll, “4d–4f emission resonance in laser-produced plasmas,” J. Opt. Soc. Am. 71, 227–230 (1981).
[CrossRef]

Orzechowski, T. J.

R. C. Spitzer, T. J. Orzechowski, D. W. Phillion, R. L. Kauffman, and C. Cerjan, “Conversion efficiencies from laser-plasmas in the extreme ultraviolet regime,” J. Appl. Phys. 79, 2251–2258 (1996).
[CrossRef]

Phillion, D. W.

R. C. Spitzer, T. J. Orzechowski, D. W. Phillion, R. L. Kauffman, and C. Cerjan, “Conversion efficiencies from laser-plasmas in the extreme ultraviolet regime,” J. Appl. Phys. 79, 2251–2258 (1996).
[CrossRef]

R. L. Kauffman, D. W. Phillion, and R. C. Spitzer, “X-ray production ~13 nm from laser-produced plasmas for projection x-ray lithography applications,” Appl. Opt. 32, 6897–6900 (1993).
[CrossRef] [PubMed]

Richardson, M.

Richardson, M. C.

W. T. Silfvast, M. C. Richardson, H. Bender, A. Hanzo, V. Yanovsky, F. Jin, and T. Thorpe, “Laser-produced plasmas for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 10, 3126–3133 (1992).
[CrossRef]

Rosen, R. S.

Rus, B.

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Sakaya, N.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Schwob, J. L.

P. Mandelbaum, M. Finkenthal, J. L. Schwob, and M. Klapisch, “Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70–100-Å range,” Phys. Rev. A 35, 5051–5059 (1987).
[CrossRef] [PubMed]

Sebban, S.

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Shevelko, A. P.

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57, 276–282 (1998).
[CrossRef]

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo absorption, scattering, and reflection E= 100–2000 eV Z=1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Shimoura, A.

A. Shimoura, S. Amano, S. Miyamoto, and T. Mochizuki, “X-ray generation in cryogenic targets irradiated by a 1-μm pulsed laser,” Appl. Phys. Lett. 72, 164–166 (1998).
[CrossRef]

Shmaenok, L. A.

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57, 276–282 (1998).
[CrossRef]

Silfvast, W. T.

M. Richardson, W. T. Silfvast, H. A. Bender, A. Hanzo, V. P. Yanovsky, F. Jin, and J. Thorpe, “Characterization and control of laser plasma flux parameters for soft x-ray projection lithography,” Appl. Opt. 32, 6901–6910 (1993).
[CrossRef] [PubMed]

W. T. Silfvast, M. C. Richardson, H. Bender, A. Hanzo, V. Yanovsky, F. Jin, and T. Thorpe, “Laser-produced plasmas for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 10, 3126–3133 (1992).
[CrossRef]

Skála, J.

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Sommargren, G. E.

Spitzer, R. C.

Stearns, D. G.

Stulen, R. H.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Suzuki, M.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Svendsen, W.

W. Svendsen and G. O’Sullivan, “Statistics and characteristics of XUV transition arrays from laser-produced plasmas of the elements tin through iodine,” Phys. Rev. A 50, 3710–3718 (1994).
[CrossRef] [PubMed]

Szczurek, M.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Tajima, J.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Takabe, H.

H. Takabe and T. Ishii, “Effect of nonuniform implosion on high-gain inertial confinement fusion targets,” Jpn. J. Appl. Phys. 32, 5675–5680 (1993).
[CrossRef]

Tallents, G. J.

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo absorption, scattering, and reflection E= 100–2000 eV Z=1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Tennant, D. M.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Thorpe, J.

Thorpe, T.

W. T. Silfvast, M. C. Richardson, H. Bender, A. Hanzo, V. Yanovsky, F. Jin, and T. Thorpe, “Laser-produced plasmas for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 10, 3126–3133 (1992).
[CrossRef]

Tichenor, D. A.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Ulm, G.

Vernon, S. P.

Waskiewicz, W. K.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

White, D. L.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Wilhein, T.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Windt, D. L.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Wood II, O. R.

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

Yanovsky, V.

W. T. Silfvast, M. C. Richardson, H. Bender, A. Hanzo, V. Yanovsky, F. Jin, and T. Thorpe, “Laser-produced plasmas for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 10, 3126–3133 (1992).
[CrossRef]

Yanovsky, V. P.

Zeitoun, P.

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Adv. At. Mol. Phys.

J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Transition arrays in the spectra of ionized atoms,” Adv. At. Mol. Phys. 23, 131–195 (1988).
[CrossRef]

Appl. Opt.

T. Kita, T. Harada, N. Nakano, and H. Kuroda, “Mechanically ruled aberration-corrected concave gratings for a flat-field grazing-incidence spectrograph,” Appl. Opt. 22, 512–513 (1983).
[CrossRef] [PubMed]

J. M. Bridges, C. L. Cromer, and T. J. McIlrath, “Investigation of a laser-produced plasma VUV light source,” Appl. Opt. 25, 2208–2214 (1986).
[CrossRef] [PubMed]

R. L. Kauffman, D. W. Phillion, and R. C. Spitzer, “X-ray production ~13 nm from laser-produced plasmas for projection x-ray lithography applications,” Appl. Opt. 32, 6897–6900 (1993).
[CrossRef] [PubMed]

M. Richardson, W. T. Silfvast, H. A. Bender, A. Hanzo, V. P. Yanovsky, F. Jin, and J. Thorpe, “Characterization and control of laser plasma flux parameters for soft x-ray projection lithography,” Appl. Opt. 32, 6901–6910 (1993).
[CrossRef] [PubMed]

C. Cerjan, “X-ray plasma source design simulations,” Appl. Opt. 32, 6911–6913 (1993).
[CrossRef] [PubMed]

D. G. Stearns, R. S. Rosen, and S. P. Vernon, “Multilayer mirror technology for soft-x-ray projection lithography,” Appl. Opt. 32, 6952–6960 (1993).
[CrossRef] [PubMed]

D. P. Gaines, R. C. Spitzer, N. M. Ceglio, M. Krumrey, and G. Ulm, “Radiation hardness of molybdenum silicon multilayers designed for use in a soft-x-ray projection lithography system,” Appl. Opt. 32, 6991–6998 (1993).
[CrossRef] [PubMed]

N. M. Ceglio, A. M. Hawryluk, and G. E. Sommargren, “Front-end design issues in soft x-ray projection lithography,” Appl. Opt. 32, 7050–7056 (1993).
[CrossRef] [PubMed]

I. W. Choi, J. U. Lee, and C. H. Nam, “Space-resolving flat-field extreme ultraviolet spectrograph system and its aberration analysis with wave-front aberration,” Appl. Opt. 36, 1457–1466 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Shimoura, S. Amano, S. Miyamoto, and T. Mochizuki, “X-ray generation in cryogenic targets irradiated by a 1-μm pulsed laser,” Appl. Phys. Lett. 72, 164–166 (1998).
[CrossRef]

At. Data Nucl. Data Tables

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo absorption, scattering, and reflection E= 100–2000 eV Z=1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

J. Appl. Phys.

R. C. Spitzer, T. J. Orzechowski, D. W. Phillion, R. L. Kauffman, and C. Cerjan, “Conversion efficiencies from laser-plasmas in the extreme ultraviolet regime,” J. Appl. Phys. 79, 2251–2258 (1996).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem. Ref. Data Suppl. 1

R. L. Kelly, “Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton,” J. Phys. Chem. Ref. Data Suppl. 1 16, 223 (1987).

J. Vac. Sci. Technol. B

G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991).
[CrossRef]

W. T. Silfvast, M. C. Richardson, H. Bender, A. Hanzo, V. Yanovsky, F. Jin, and T. Thorpe, “Laser-produced plasmas for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 10, 3126–3133 (1992).
[CrossRef]

Jpn. J. Appl. Phys.

H. Takabe and T. Ishii, “Effect of nonuniform implosion on high-gain inertial confinement fusion targets,” Jpn. J. Appl. Phys. 32, 5675–5680 (1993).
[CrossRef]

Opt. Commun.

H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999).
[CrossRef]

Opt. Eng.

G. O’Sullivan and R. Faulkner, “Tunable narrowband soft x-ray source for projection lithography,” Opt. Eng. 33, 3978–3983 (1994).
[CrossRef]

Phys. Fluids

R. Fabbro, C. Max, and E. Fabre, “Planar laser-driven ablation: effect of inhibited electron thermal conduction,” Phys. Fluids 28, 1463–1481 (1985).
[CrossRef]

Phys. Rev. A

P. Mandelbaum, M. Finkenthal, J. L. Schwob, and M. Klapisch, “Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70–100-Å range,” Phys. Rev. A 35, 5051–5059 (1987).
[CrossRef] [PubMed]

W. Svendsen and G. O’Sullivan, “Statistics and characteristics of XUV transition arrays from laser-produced plasmas of the elements tin through iodine,” Phys. Rev. A 50, 3710–3718 (1994).
[CrossRef] [PubMed]

P. K. Carroll and G. O’Sullivan, “Ground-state configurations of ionic species I through XVI for Z=57–74 and the interpretation of 4d–4f emission resonances in laser-produced plasmas,” Phys. Rev. A 25, 275–286 (1982).
[CrossRef]

B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997).
[CrossRef]

Phys. Scr.

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57, 276–282 (1998).
[CrossRef]

Proc. SPIE

T. Matsui and N. Kogawa, “Laser plasma x-ray source using a gas target of mixed fine particles,” in High-Power Lasers in Energy Engineering, K. Mima, G. L. Kulcinski, and W. Hogan, eds., Proc. SPIE 3886, 610–617 (2000).
[CrossRef]

Other

J. D. Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington, D.C., 1998), p. 29.

G. M. Zeng, H. Daido, K. Murai, Y. Kato, M. Nakatsuka, and S. Nakai, “Line x-ray emissions from highly ionized plasmas of various species irradiated by compact solid-state lasers,” J. Appl. Phys. 72, 3355–3363 (1992); G. M. Zeng, H. Daido, T. Nishikawa, H. Takabe, S. Nakayama, H. Aritome, K. Murai, Y. Kato, M. Nakatsuka, and S. Nakai, “Soft x-ray spectra of highly ionized elements with atomic numbers ranging from 57 to 82 produced by compact lasers,” J. Appl. Phys. 75, 1923–1930 (1994).
[CrossRef]

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge U. Press, Cambridge, 1997), Chap. 8, p. 223.

G. O’Sullivan, “The spectra of laser produced plasmas with lanthanide targets,” in Giant Resonances in Atoms, Molecules and Solids, J. P. Connerade, J. M. Esteva, and R. Karnatak, eds., Vol. 151 of NATO Advanced Study Institute Series B: Physics (Plenum, New York, 1987), pp. 505–532.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup used to measure space-resolved spectra from pure-Sn metal and its oxide targets. (a) Schematic arrangement of a laser, a target, and a soft-x-ray measurement system. (b) Schematic diagram of a space-resolving flat-field soft-x-ray spectrometer.

Fig. 2
Fig. 2

(a) One-dimensional space-resolved spectral images, (b) spatial intensity profiles at 13.5-nm wavelength of the soft x rays along the target normal. Spectra were obtained with a 341-mJ laser pulse on the target and with an observation angle of θ=90°. The direction of the positive abscissa in (b) corresponds to the target normal.

Fig. 3
Fig. 3

Characteristics of pure Sn and its oxide plasmas calculated by the one-dimensional hydrodynamic code, ILESTA-1D. The incident laser pulse is assumed to have an intensity of 4.3×1011 W/cm2 and a pulse width of 8 ns. The profiles were taken at the time of the laser pulse peak.

Fig. 4
Fig. 4

Variation of soft-x-ray intensity distributions from a pure-Sn metal target and a SnO2 film target with increasing distance from the original target surface, obtained with a laser pulse of 341-mJ energy on target and with an observation angle of θ=90°. The real distance between adjacent graphs is 96 μm along the target normal.

Fig. 5
Fig. 5

Variation of soft-x-ray intensity distributions as a function of position from the original target surface obtained with 341-mJ laser energy on target and with an observation angle of θ=90°. As they move away from the target surface, the spectra are represented successively by curves A, B, and C. The real distance between spectra A and B is 96 μm, and that for B and C is 240 μm.

Fig. 6
Fig. 6

Variation of soft-x-ray intensity distributions as a function of position from the original target surface obtained with different laser energies on a target E and with an observation angle of θ=90°. As they move away from the target surface, the spectra are represented successively by curves A, B, and C. (a), (b) E=178 mJ; the spectra A–B distance, 96 μm; the spectra B–C distance, 144 μm. (c), (d) E=82 mJ; the spectra A–B–C distance, 96 μm. (e), (f) E=21 mJ; the spectra A–B–C distance, 96 μm. (g), (h) E=8 mJ; the spectra A–B–C distance, 96 μm.

Fig. 7
Fig. 7

Variation of soft-x-ray intensity distributions as a function of position on plasma, obtained with 347-mJ laser energy on target and with an observation angle of θ=45°. As they move away from the target surface, the spectra are represented successively by curves A, B, and C. The real distance between spectra A and B is 96 μm, and that for B and C is 192 μm.

Fig. 8
Fig. 8

Wavelength shift of the spectra of a SnO2 film target for three observation angles θ compared with those from a pure-Sn metal target. The observation angle is defined as the angle between the observation axis of spectrometer and target normal. E is the laser energy incident upon the target.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

cs=9.79×105(γZTe/A)1/2 [cm/s],
0Rnz(r)dr9.28×1014(Ti/A)1/2/faλ[cm-2]

Metrics