Abstract

A diode-pumped broadband multiple-quantum-well vertical-external-cavity surface-emitting semiconductor laser has been developed for high-sensitivity intracavity laser-absorption spectroscopy. The semiconductor structure design has been optimized so as to provide maximum laser-emission bandwidth and wavelength tunability. The laser has a 100-mW threshold of continuous room-temperature operation, and it can be tuned within 25 nm around its design wavelength (980 nm). A detection limit lower than 10-10 per centimeter of absorption path has been achieved, given 3×10-11cm-1 Hz-1/2. Its spectro-temporal dynamics has been studied in the time range from a few microseconds to ∼1 s. No evidence of nonlinear mode interactions, which in many cases limit the sensitivity, has been observed. We have also shown that with a cavity length reduced to 2.5 cm, the laser is very attractive as a tunable single-frequency source owing to its stable operation in a single TEM00 mode at a pump power of up to 1 W.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Garnache, A. Kachanov, F. Stoeckel, and R. Planel, “High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers,” Opt. Lett. 24, 826–828 (1999).
    [CrossRef]
  2. E. Sviridenkov and L. Sinitsa, “Intracavity laser spectroscopy,” Proc. SPIE 3342, 1–270 (1998).
    [CrossRef]
  3. A. Kachanov, A. Charvat, and F. Stoeckle, “Intracavity laser spectroscopy with vibronic solid state lasers. I. Spectro-temporal transient behavior of a Ti:sapphire laser,” J. Opt. Soc. Am. B 11, 2412–2421 (1994).
    [CrossRef]
  4. D. Romanini, “Cavity-ringdown spectroscopy versus intra- cavity laser absorption,” ACS Symp. Ser. 720, 127 (1999).
  5. V. M. Baev, J. Eschner, E. Paeth, R. Schüler, and P. E. Toschek, “Intra-cavity spectroscopy with diode lasers,” Appl. Phys. B: Photophys. Laser Chem. 55, 463–477 (1992).
    [CrossRef]
  6. J. Sandusky and S. Brueck, “A CW external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 8, 313–315 (1996).
    [CrossRef]
  7. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
    [CrossRef]
  8. M. Larson, M. Kondow, T. Kitatani, K. Tamura, Y. Yazawa, and M. Okai, “Photopumped lasing at 1.25 μm of GaInNAs-GaAs multiple-quantum-well vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 1549–1551 (1997).
    [CrossRef]
  9. E. N. Antonov, P. S. Antsiferov, A. A. Kachanov, and V. G. Koloshnikov, “Parasitic selection in intracavity laser detection spectroscopy,” Opt. Commun. 41, 131–134 (1982).
    [CrossRef]
  10. V. R. Mironenko and V. I. Yudson, “Strong dependence of multimode laser generation spectrum on spatial localization of gain and losses,” Opt. Commun. 41, 126–130 (1982).
    [CrossRef]
  11. V. Jayaraman, J. Geske, M. MacDougal, F. Peters, T. Lowes, and T. Char, “Uniform threshold current, continuous-wave, single-mode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett. 34, 1405–1407 (1998).
    [CrossRef]
  12. G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
    [CrossRef]
  13. A. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 μm at room temperature,” Electron. Lett. 34, 281–282 (1998).
    [CrossRef]
  14. S. Corzine, R. Geels, J. Scott, R.-H. Yan, and L. Coldren, “Design of Fabry–Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513–1524 (1989).
    [CrossRef]
  15. M. Raja, S. Brueck, M. Osinki, C. Schaus, J. McInerney, T. Brennman, and B. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25, 1500–1511 (1989).
    [CrossRef]
  16. J. Jewell, J. Harbison, A. Scherer, Y. Lee, and L. Florez, “Vertical cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
    [CrossRef]
  17. P. S. Zory, Jr., Quantum Well Lasers (Academic, New York, 1993).
  18. F. Stoeckel, M. A. Mélières, and M. Chenevier, “Quantitative measurements of very weak H2O absorption lines by time resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
    [CrossRef]
  19. F. Koyama, K. Morito, and K. Iga, “Intensity noise and polarization stability of GaAlAs–GaAs surface emitting lasers,” IEEE J. Quantum Electron. 27, 1410–1416 (1991).
    [CrossRef]
  20. V. M. Baev, T. P. Belikova, E. A. Sviridenkov, and A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).
  21. F. Stoeckel and G. H. Atkinson, “Time evolution of a broad-band quasi-cw dye laser. Limitations of sensitivity in intracavity laser spectroscopy,” Appl. Opt. 24, 3591–3597 (1985).
    [CrossRef]
  22. A. Kachanov, A. Charvat, and F. Stoeckel, “Intracavity laser spectroscopy with vibronic solid state lasers. II. Influence of the nonlinear mode coupling on the maximum sensitivity of a Ti:sapphire laser,” J. Opt. Soc. Am. B 12, 970–979 (1995).
    [CrossRef]
  23. S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, “Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy,” JETP Lett. 55, 581–585 (1992).
  24. J. Sierks, V. M. Baev, and P. E. Toschek, “Enhancement of the sensitivity of a multimode dye laser to intracavity absorption,” Opt. Commun. 96, 81–86 (1993).
    [CrossRef]
  25. E. Antonov, A. Kachanov, V. Mironenko, and T. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
    [CrossRef]
  26. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
  27. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
    [CrossRef]
  28. A. Campargue, L. Biennier, A. Garnache, A. Kachanov, and D. Romanini, “High resolution absorption spectroscopy of the V1=2–6 acetylenic overtone bands of propyne: spectroscopy and dynamics,” J. Chem. Phys. 111, 7888–7903 (1999).
    [CrossRef]

1999 (3)

A. Garnache, A. Kachanov, F. Stoeckel, and R. Planel, “High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers,” Opt. Lett. 24, 826–828 (1999).
[CrossRef]

D. Romanini, “Cavity-ringdown spectroscopy versus intra- cavity laser absorption,” ACS Symp. Ser. 720, 127 (1999).

A. Campargue, L. Biennier, A. Garnache, A. Kachanov, and D. Romanini, “High resolution absorption spectroscopy of the V1=2–6 acetylenic overtone bands of propyne: spectroscopy and dynamics,” J. Chem. Phys. 111, 7888–7903 (1999).
[CrossRef]

1998 (4)

E. Sviridenkov and L. Sinitsa, “Intracavity laser spectroscopy,” Proc. SPIE 3342, 1–270 (1998).
[CrossRef]

V. Jayaraman, J. Geske, M. MacDougal, F. Peters, T. Lowes, and T. Char, “Uniform threshold current, continuous-wave, single-mode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett. 34, 1405–1407 (1998).
[CrossRef]

G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
[CrossRef]

A. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 μm at room temperature,” Electron. Lett. 34, 281–282 (1998).
[CrossRef]

1997 (3)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[CrossRef]

M. Larson, M. Kondow, T. Kitatani, K. Tamura, Y. Yazawa, and M. Okai, “Photopumped lasing at 1.25 μm of GaInNAs-GaAs multiple-quantum-well vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 1549–1551 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

1996 (1)

J. Sandusky and S. Brueck, “A CW external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 8, 313–315 (1996).
[CrossRef]

1995 (1)

1994 (1)

1993 (1)

J. Sierks, V. M. Baev, and P. E. Toschek, “Enhancement of the sensitivity of a multimode dye laser to intracavity absorption,” Opt. Commun. 96, 81–86 (1993).
[CrossRef]

1992 (2)

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, “Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy,” JETP Lett. 55, 581–585 (1992).

V. M. Baev, J. Eschner, E. Paeth, R. Schüler, and P. E. Toschek, “Intra-cavity spectroscopy with diode lasers,” Appl. Phys. B: Photophys. Laser Chem. 55, 463–477 (1992).
[CrossRef]

1991 (2)

J. Jewell, J. Harbison, A. Scherer, Y. Lee, and L. Florez, “Vertical cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

F. Koyama, K. Morito, and K. Iga, “Intensity noise and polarization stability of GaAlAs–GaAs surface emitting lasers,” IEEE J. Quantum Electron. 27, 1410–1416 (1991).
[CrossRef]

1989 (2)

S. Corzine, R. Geels, J. Scott, R.-H. Yan, and L. Coldren, “Design of Fabry–Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513–1524 (1989).
[CrossRef]

M. Raja, S. Brueck, M. Osinki, C. Schaus, J. McInerney, T. Brennman, and B. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25, 1500–1511 (1989).
[CrossRef]

1985 (1)

1983 (1)

E. Antonov, A. Kachanov, V. Mironenko, and T. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

1982 (3)

F. Stoeckel, M. A. Mélières, and M. Chenevier, “Quantitative measurements of very weak H2O absorption lines by time resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
[CrossRef]

E. N. Antonov, P. S. Antsiferov, A. A. Kachanov, and V. G. Koloshnikov, “Parasitic selection in intracavity laser detection spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

V. R. Mironenko and V. I. Yudson, “Strong dependence of multimode laser generation spectrum on spatial localization of gain and losses,” Opt. Commun. 41, 126–130 (1982).
[CrossRef]

1978 (1)

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, and A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

Alibert, C.

A. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 μm at room temperature,” Electron. Lett. 34, 281–282 (1998).
[CrossRef]

Antonov, E.

E. Antonov, A. Kachanov, V. Mironenko, and T. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

Antonov, E. N.

E. N. Antonov, P. S. Antsiferov, A. A. Kachanov, and V. G. Koloshnikov, “Parasitic selection in intracavity laser detection spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

Antsiferov, P. S.

E. N. Antonov, P. S. Antsiferov, A. A. Kachanov, and V. G. Koloshnikov, “Parasitic selection in intracavity laser detection spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

Atkinson, G. H.

Baev, V. M.

J. Sierks, V. M. Baev, and P. E. Toschek, “Enhancement of the sensitivity of a multimode dye laser to intracavity absorption,” Opt. Commun. 96, 81–86 (1993).
[CrossRef]

V. M. Baev, J. Eschner, E. Paeth, R. Schüler, and P. E. Toschek, “Intra-cavity spectroscopy with diode lasers,” Appl. Phys. B: Photophys. Laser Chem. 55, 463–477 (1992).
[CrossRef]

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, and A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

Baranov, A.

A. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 μm at room temperature,” Electron. Lett. 34, 281–282 (1998).
[CrossRef]

Belikova, T. P.

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, and A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

Biennier, L.

A. Campargue, L. Biennier, A. Garnache, A. Kachanov, and D. Romanini, “High resolution absorption spectroscopy of the V1=2–6 acetylenic overtone bands of propyne: spectroscopy and dynamics,” J. Chem. Phys. 111, 7888–7903 (1999).
[CrossRef]

Boissier, G.

A. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 μm at room temperature,” Electron. Lett. 34, 281–282 (1998).
[CrossRef]

Brennman, T.

M. Raja, S. Brueck, M. Osinki, C. Schaus, J. McInerney, T. Brennman, and B. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25, 1500–1511 (1989).
[CrossRef]

Brueck, S.

J. Sandusky and S. Brueck, “A CW external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 8, 313–315 (1996).
[CrossRef]

M. Raja, S. Brueck, M. Osinki, C. Schaus, J. McInerney, T. Brennman, and B. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25, 1500–1511 (1989).
[CrossRef]

Campargue, A.

A. Campargue, L. Biennier, A. Garnache, A. Kachanov, and D. Romanini, “High resolution absorption spectroscopy of the V1=2–6 acetylenic overtone bands of propyne: spectroscopy and dynamics,” J. Chem. Phys. 111, 7888–7903 (1999).
[CrossRef]

Char, T.

V. Jayaraman, J. Geske, M. MacDougal, F. Peters, T. Lowes, and T. Char, “Uniform threshold current, continuous-wave, single-mode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett. 34, 1405–1407 (1998).
[CrossRef]

Charvat, A.

Chenevier, M.

F. Stoeckel, M. A. Mélières, and M. Chenevier, “Quantitative measurements of very weak H2O absorption lines by time resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
[CrossRef]

Coldren, L.

S. Corzine, R. Geels, J. Scott, R.-H. Yan, and L. Coldren, “Design of Fabry–Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513–1524 (1989).
[CrossRef]

Corzine, S.

S. Corzine, R. Geels, J. Scott, R.-H. Yan, and L. Coldren, “Design of Fabry–Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513–1524 (1989).
[CrossRef]

Debray, J.

G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
[CrossRef]

Eschner, J.

V. M. Baev, J. Eschner, E. Paeth, R. Schüler, and P. E. Toschek, “Intra-cavity spectroscopy with diode lasers,” Appl. Phys. B: Photophys. Laser Chem. 55, 463–477 (1992).
[CrossRef]

Florez, L.

J. Jewell, J. Harbison, A. Scherer, Y. Lee, and L. Florez, “Vertical cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Gaillard, S.

A. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 μm at room temperature,” Electron. Lett. 34, 281–282 (1998).
[CrossRef]

Garnache, A.

A. Garnache, A. Kachanov, F. Stoeckel, and R. Planel, “High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers,” Opt. Lett. 24, 826–828 (1999).
[CrossRef]

A. Campargue, L. Biennier, A. Garnache, A. Kachanov, and D. Romanini, “High resolution absorption spectroscopy of the V1=2–6 acetylenic overtone bands of propyne: spectroscopy and dynamics,” J. Chem. Phys. 111, 7888–7903 (1999).
[CrossRef]

Geels, R.

S. Corzine, R. Geels, J. Scott, R.-H. Yan, and L. Coldren, “Design of Fabry–Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513–1524 (1989).
[CrossRef]

Geske, J.

V. Jayaraman, J. Geske, M. MacDougal, F. Peters, T. Lowes, and T. Char, “Uniform threshold current, continuous-wave, single-mode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett. 34, 1405–1407 (1998).
[CrossRef]

Grech, P.

A. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 μm at room temperature,” Electron. Lett. 34, 281–282 (1998).
[CrossRef]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[CrossRef]

Hammons, B.

M. Raja, S. Brueck, M. Osinki, C. Schaus, J. McInerney, T. Brennman, and B. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25, 1500–1511 (1989).
[CrossRef]

Harbison, J.

J. Jewell, J. Harbison, A. Scherer, Y. Lee, and L. Florez, “Vertical cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Harmand, J.

G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
[CrossRef]

Iga, K.

F. Koyama, K. Morito, and K. Iga, “Intensity noise and polarization stability of GaAlAs–GaAs surface emitting lasers,” IEEE J. Quantum Electron. 27, 1410–1416 (1991).
[CrossRef]

Jayaraman, V.

V. Jayaraman, J. Geske, M. MacDougal, F. Peters, T. Lowes, and T. Char, “Uniform threshold current, continuous-wave, single-mode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett. 34, 1405–1407 (1998).
[CrossRef]

Jewell, J.

J. Jewell, J. Harbison, A. Scherer, Y. Lee, and L. Florez, “Vertical cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Kachanov, A.

Kachanov, A. A.

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, “Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy,” JETP Lett. 55, 581–585 (1992).

E. N. Antonov, P. S. Antsiferov, A. A. Kachanov, and V. G. Koloshnikov, “Parasitic selection in intracavity laser detection spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

Kitatani, T.

M. Larson, M. Kondow, T. Kitatani, K. Tamura, Y. Yazawa, and M. Okai, “Photopumped lasing at 1.25 μm of GaInNAs-GaAs multiple-quantum-well vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 1549–1551 (1997).
[CrossRef]

Koloshnikov, V. G.

E. N. Antonov, P. S. Antsiferov, A. A. Kachanov, and V. G. Koloshnikov, “Parasitic selection in intracavity laser detection spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

Kondow, M.

M. Larson, M. Kondow, T. Kitatani, K. Tamura, Y. Yazawa, and M. Okai, “Photopumped lasing at 1.25 μm of GaInNAs-GaAs multiple-quantum-well vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 1549–1551 (1997).
[CrossRef]

Kovalenko, S. A.

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, “Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy,” JETP Lett. 55, 581–585 (1992).

Koyama, F.

F. Koyama, K. Morito, and K. Iga, “Intensity noise and polarization stability of GaAlAs–GaAs surface emitting lasers,” IEEE J. Quantum Electron. 27, 1410–1416 (1991).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[CrossRef]

Larson, M.

M. Larson, M. Kondow, T. Kitatani, K. Tamura, Y. Yazawa, and M. Okai, “Photopumped lasing at 1.25 μm of GaInNAs-GaAs multiple-quantum-well vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 1549–1551 (1997).
[CrossRef]

Lee, Y.

J. Jewell, J. Harbison, A. Scherer, Y. Lee, and L. Florez, “Vertical cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Lowes, T.

V. Jayaraman, J. Geske, M. MacDougal, F. Peters, T. Lowes, and T. Char, “Uniform threshold current, continuous-wave, single-mode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett. 34, 1405–1407 (1998).
[CrossRef]

MacDougal, M.

V. Jayaraman, J. Geske, M. MacDougal, F. Peters, T. Lowes, and T. Char, “Uniform threshold current, continuous-wave, single-mode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett. 34, 1405–1407 (1998).
[CrossRef]

McInerney, J.

M. Raja, S. Brueck, M. Osinki, C. Schaus, J. McInerney, T. Brennman, and B. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25, 1500–1511 (1989).
[CrossRef]

Mélières, M. A.

F. Stoeckel, M. A. Mélières, and M. Chenevier, “Quantitative measurements of very weak H2O absorption lines by time resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
[CrossRef]

Meriadec, C.

G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
[CrossRef]

Mironenko, V.

E. Antonov, A. Kachanov, V. Mironenko, and T. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

Mironenko, V. R.

V. R. Mironenko and V. I. Yudson, “Strong dependence of multimode laser generation spectrum on spatial localization of gain and losses,” Opt. Commun. 41, 126–130 (1982).
[CrossRef]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[CrossRef]

Morito, K.

F. Koyama, K. Morito, and K. Iga, “Intensity noise and polarization stability of GaAlAs–GaAs surface emitting lasers,” IEEE J. Quantum Electron. 27, 1410–1416 (1991).
[CrossRef]

Okai, M.

M. Larson, M. Kondow, T. Kitatani, K. Tamura, Y. Yazawa, and M. Okai, “Photopumped lasing at 1.25 μm of GaInNAs-GaAs multiple-quantum-well vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 1549–1551 (1997).
[CrossRef]

Osinki, M.

M. Raja, S. Brueck, M. Osinki, C. Schaus, J. McInerney, T. Brennman, and B. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25, 1500–1511 (1989).
[CrossRef]

Oudar, J.

G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
[CrossRef]

Paeth, E.

V. M. Baev, J. Eschner, E. Paeth, R. Schüler, and P. E. Toschek, “Intra-cavity spectroscopy with diode lasers,” Appl. Phys. B: Photophys. Laser Chem. 55, 463–477 (1992).
[CrossRef]

Peters, F.

V. Jayaraman, J. Geske, M. MacDougal, F. Peters, T. Lowes, and T. Char, “Uniform threshold current, continuous-wave, single-mode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett. 34, 1405–1407 (1998).
[CrossRef]

Plakhotnik, T.

E. Antonov, A. Kachanov, V. Mironenko, and T. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

Planel, R.

Raj, R.

G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
[CrossRef]

Raja, M.

M. Raja, S. Brueck, M. Osinki, C. Schaus, J. McInerney, T. Brennman, and B. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25, 1500–1511 (1989).
[CrossRef]

Rivera, T.

G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
[CrossRef]

Romanini, D.

D. Romanini, “Cavity-ringdown spectroscopy versus intra- cavity laser absorption,” ACS Symp. Ser. 720, 127 (1999).

A. Campargue, L. Biennier, A. Garnache, A. Kachanov, and D. Romanini, “High resolution absorption spectroscopy of the V1=2–6 acetylenic overtone bands of propyne: spectroscopy and dynamics,” J. Chem. Phys. 111, 7888–7903 (1999).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

Rouillard, Y.

A. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 μm at room temperature,” Electron. Lett. 34, 281–282 (1998).
[CrossRef]

Sagnes, I.

G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
[CrossRef]

Sandusky, J.

J. Sandusky and S. Brueck, “A CW external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 8, 313–315 (1996).
[CrossRef]

Schaus, C.

M. Raja, S. Brueck, M. Osinki, C. Schaus, J. McInerney, T. Brennman, and B. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25, 1500–1511 (1989).
[CrossRef]

Scherer, A.

J. Jewell, J. Harbison, A. Scherer, Y. Lee, and L. Florez, “Vertical cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Schüler, R.

V. M. Baev, J. Eschner, E. Paeth, R. Schüler, and P. E. Toschek, “Intra-cavity spectroscopy with diode lasers,” Appl. Phys. B: Photophys. Laser Chem. 55, 463–477 (1992).
[CrossRef]

Scott, J.

S. Corzine, R. Geels, J. Scott, R.-H. Yan, and L. Coldren, “Design of Fabry–Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513–1524 (1989).
[CrossRef]

Sermage, B.

G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
[CrossRef]

Sierks, J.

J. Sierks, V. M. Baev, and P. E. Toschek, “Enhancement of the sensitivity of a multimode dye laser to intracavity absorption,” Opt. Commun. 96, 81–86 (1993).
[CrossRef]

Sinitsa, L.

E. Sviridenkov and L. Sinitsa, “Intracavity laser spectroscopy,” Proc. SPIE 3342, 1–270 (1998).
[CrossRef]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[CrossRef]

Stoeckel, F.

Stoeckle, F.

Suchkov, A. F.

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, and A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

Sviridenkov, E.

E. Sviridenkov and L. Sinitsa, “Intracavity laser spectroscopy,” Proc. SPIE 3342, 1–270 (1998).
[CrossRef]

Sviridenkov, E. A.

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, “Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy,” JETP Lett. 55, 581–585 (1992).

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, and A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

Tamura, K.

M. Larson, M. Kondow, T. Kitatani, K. Tamura, Y. Yazawa, and M. Okai, “Photopumped lasing at 1.25 μm of GaInNAs-GaAs multiple-quantum-well vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 1549–1551 (1997).
[CrossRef]

Toschek, P. E.

J. Sierks, V. M. Baev, and P. E. Toschek, “Enhancement of the sensitivity of a multimode dye laser to intracavity absorption,” Opt. Commun. 96, 81–86 (1993).
[CrossRef]

V. M. Baev, J. Eschner, E. Paeth, R. Schüler, and P. E. Toschek, “Intra-cavity spectroscopy with diode lasers,” Appl. Phys. B: Photophys. Laser Chem. 55, 463–477 (1992).
[CrossRef]

Ungaro, G.

G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
[CrossRef]

Vinogradov, S. E.

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, “Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy,” JETP Lett. 55, 581–585 (1992).

Yan, R.-H.

S. Corzine, R. Geels, J. Scott, R.-H. Yan, and L. Coldren, “Design of Fabry–Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513–1524 (1989).
[CrossRef]

Yazawa, Y.

M. Larson, M. Kondow, T. Kitatani, K. Tamura, Y. Yazawa, and M. Okai, “Photopumped lasing at 1.25 μm of GaInNAs-GaAs multiple-quantum-well vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 1549–1551 (1997).
[CrossRef]

Yudson, V. I.

V. R. Mironenko and V. I. Yudson, “Strong dependence of multimode laser generation spectrum on spatial localization of gain and losses,” Opt. Commun. 41, 126–130 (1982).
[CrossRef]

ACS Symp. Ser. (1)

D. Romanini, “Cavity-ringdown spectroscopy versus intra- cavity laser absorption,” ACS Symp. Ser. 720, 127 (1999).

Appl. Opt. (1)

Appl. Phys. B: Photophys. Laser Chem. (1)

V. M. Baev, J. Eschner, E. Paeth, R. Schüler, and P. E. Toschek, “Intra-cavity spectroscopy with diode lasers,” Appl. Phys. B: Photophys. Laser Chem. 55, 463–477 (1992).
[CrossRef]

Chem. Phys. Lett. (1)

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

Electron. Lett. (3)

V. Jayaraman, J. Geske, M. MacDougal, F. Peters, T. Lowes, and T. Char, “Uniform threshold current, continuous-wave, single-mode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett. 34, 1405–1407 (1998).
[CrossRef]

G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998).
[CrossRef]

A. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 μm at room temperature,” Electron. Lett. 34, 281–282 (1998).
[CrossRef]

IEEE J. Quantum Electron. (4)

S. Corzine, R. Geels, J. Scott, R.-H. Yan, and L. Coldren, “Design of Fabry–Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513–1524 (1989).
[CrossRef]

M. Raja, S. Brueck, M. Osinki, C. Schaus, J. McInerney, T. Brennman, and B. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25, 1500–1511 (1989).
[CrossRef]

J. Jewell, J. Harbison, A. Scherer, Y. Lee, and L. Florez, “Vertical cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

F. Koyama, K. Morito, and K. Iga, “Intensity noise and polarization stability of GaAlAs–GaAs surface emitting lasers,” IEEE J. Quantum Electron. 27, 1410–1416 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Sandusky and S. Brueck, “A CW external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 8, 313–315 (1996).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[CrossRef]

M. Larson, M. Kondow, T. Kitatani, K. Tamura, Y. Yazawa, and M. Okai, “Photopumped lasing at 1.25 μm of GaInNAs-GaAs multiple-quantum-well vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 1549–1551 (1997).
[CrossRef]

J. Chem. Phys. (2)

F. Stoeckel, M. A. Mélières, and M. Chenevier, “Quantitative measurements of very weak H2O absorption lines by time resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
[CrossRef]

A. Campargue, L. Biennier, A. Garnache, A. Kachanov, and D. Romanini, “High resolution absorption spectroscopy of the V1=2–6 acetylenic overtone bands of propyne: spectroscopy and dynamics,” J. Chem. Phys. 111, 7888–7903 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, “Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy,” JETP Lett. 55, 581–585 (1992).

Opt. Commun. (4)

J. Sierks, V. M. Baev, and P. E. Toschek, “Enhancement of the sensitivity of a multimode dye laser to intracavity absorption,” Opt. Commun. 96, 81–86 (1993).
[CrossRef]

E. Antonov, A. Kachanov, V. Mironenko, and T. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

E. N. Antonov, P. S. Antsiferov, A. A. Kachanov, and V. G. Koloshnikov, “Parasitic selection in intracavity laser detection spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

V. R. Mironenko and V. I. Yudson, “Strong dependence of multimode laser generation spectrum on spatial localization of gain and losses,” Opt. Commun. 41, 126–130 (1982).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

E. Sviridenkov and L. Sinitsa, “Intracavity laser spectroscopy,” Proc. SPIE 3342, 1–270 (1998).
[CrossRef]

Sov. Phys. JETP (1)

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, and A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

Other (2)

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).

P. S. Zory, Jr., Quantum Well Lasers (Academic, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Bandgap energy diagram of the VECSEL: M1, Bragg mirror; AR, antireflection coating.

Fig. 2
Fig. 2

Calculated reflectivity of the Bragg mirror M1 (solid curve), of the AR stack (dashed curve), and of GaAs bulk material (dotted curve). The incident and output medium of M1 is GaAs; the incident medium of AR is the air, and the output medium is GaAs. The left part of the plot shows values in the vicinity of the pump wavelength; the right part shows values in the vicinity of the laser design wavelength.

Fig. 3
Fig. 3

Calculated behavior of our VECSEL structure, where the AR stack is added on the top of the λ thick active region. The incident electric field value Eincident is normalized to unity. Top: Spatial distribution of |E|2 in the structure at the design wavelength and at one of the resonance wavelengths of the structure. Bottom: Wavelength dependence of |E|2 in the wells (solid curve).

Fig. 4
Fig. 4

Calculated behavior of a VECSEL structure without an AR coating working at the resonance frequency of the subcavity. A λ/2 thick Al0.19Ga0.81As layer is added on the top of the λ thick active region. Top: |E|2 spatial distribution in the structure at the resonance wavelength and outside the resonance. Bottom: Wavelength dependence of |E|2 in the wells (solid curve).

Fig. 5
Fig. 5

Calculated behavior of a VECSEL structure working at the antiresonance wavelength of the subcavity. A λ/4 thick Al0.19Ga0.81As layer is added on the top of the λ thick active region. Top: |E|2 spatial distribution in the structure at the antiresonance wavelength and outside the antiresonance. Bottom: Wave-number dependence of |E|2 in the wells (solid curve).

Fig. 6
Fig. 6

ICLA spectrometer with a broadband diode-pumped VECSEL: LD, laser diode; A, anamorphic prism pair; AR, antireflection coating; M1, high-reflectivity Bragg mirror; TEC, thermoelectric cooler; M2, high-reflectivity folding mirror; OC, output coupler; AOD, acousto-optic deflector.

Fig. 7
Fig. 7

Bottom: Diode-pumped ICLAS VECSEL spectra in atmospheric air. (i) tg20 μs (Leq6 km); (ii) tg60 μs (Leq18 km). Top: Spectrum from the HITRAN database (18 °C, 40% humidity).

Fig. 8
Fig. 8

Bottom: ICLAS VECSEL spectra in the atmospheric air. Acquisition time is 9 s; 3500 spectra are averaged. η1.3: (i) tg70 μs (Leq21 km), (ii) tg500 μs (Leq150 km); and (iii) tg1500 μs (Leq450 km). The stationary spectrum (cw) is equal to the apparatus function (acquisition time is 22 ms). Top: Spectrum from the HITRAN database (18 °C, 40% humidity). Extra lines belong to unidentified species.

Fig. 9
Fig. 9

Experimental dependences of the absorption and of the spectral width on the generation time. Top: Absorption for the group of weak atmospheric water lines near 1030 nm normalized to its value at tg=250 μs. The dashed line represents the theoretical linear dependence of the absorption. η1.3. Bottom: Spectral width (FWHM) and its theoretical square-root dependence given by Eq. (1) and shown by the dashed line. The horizontal solid line shows a stationary width of the experimental spectrum, which is equal to the apparatus function width (2 GHz ≃ 13 cavity modes). The intersection point of the two lines shown by a vertical bar corresponds to tg3 s.

Tables (1)

Tables Icon

Table 1 Laser Parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Mq(tg)=Mγtg/π2LΓexp-q-q02LΓ2γtgexp(-αqctg),
τspM0stγξ=M2γ(2πLΓξ)2.
τsp(η-1)22π2c3ξ2(Γτσ0)2S2Lltot1+2ntLaσ0ltot2.
τsp32π2n4λ4c(η-1)2ξ2S2Lltot1+2ntLaσ0ltot2,

Metrics