Abstract

The characteristics of spatial light modulation (SLM) based on a biphoton holographic grating with azobenzene films are studied theoretically and experimentally. The mechanism of SLM originates from trans↔cis isomerization of the azobenzene molecules induced by two-colored lights. Theoretical results indicate that the SLM output replica can change its sign by varying the intensity of the incoherent light or blocking it. An interesting feature of this SLM model is that it provides a method to limit diffraction efficiencies at high input intensities, which protects photosensors from damage. When an azobenzene-doped polymer film is used, incoherent-to-coherent image conversion and a sign change of a replica of the output image are observed in the experiment.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Poon, R. Juday, and T. Hara, “Spatial light modulators—research, development, and applications: introduction to the feature issue,” Appl. Opt. 37, 7471 (1998).
    [CrossRef]
  2. F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
    [CrossRef]
  3. Y. Iino and P. Davis, “Switching of self-organized patterns in mutually modulating liquid crystal devices for beam control,” J. Appl. Phys. 85, 3399–3405 (1999).
    [CrossRef]
  4. J. D. Margerum, J. Nimoy, and S.-Y. Wong, “Reversible ultraviolet imaging with liquid crystals,” Appl. Phys. Lett. 17, 51–53 (1970).
    [CrossRef]
  5. Y. Shi, D. Psaltis, A. Marrakchi, and A. R. Tanguay, Jr., “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3667 (1983).
    [CrossRef] [PubMed]
  6. E. J. Sharp, G. L. Wood, W. W. Clark III, G. J. Salamo, and R. R. Neurgaonkar, “Incoherent-to-coherent conversion using a photorefractive self-pumped phase conjugator,” Opt. Lett. 17, 207–209 (1992).
    [CrossRef] [PubMed]
  7. A. Marrakchi, “Photorefractive spatial light modulation based on enhanced self-diffraction in sillenite crystals,” Opt. Lett. 13, 654–656 (1988).
    [CrossRef] [PubMed]
  8. E. Voit and P. Günter, “Photorefractive spatial light modulation by anisotropic self-diffraction in KNbO3 crystals,” Opt. Lett. 12, 769–771 (1987).
    [CrossRef] [PubMed]
  9. C.-C. Sun, M.-W. Chang, and K. Y. Hsu, “Contrast-reversible photorefractive incoherent-to-coherent optical converter by using an anisotropic strong volume hologram,” Opt. Lett. 18, 655–657 (1993).
    [CrossRef] [PubMed]
  10. V. Weiss, A. A. Friesem, and V. A. Krongauz, “Holographic recording and all-optical modulation in photochromic polymers,” Opt. Lett. 18, 1089–1091 (1993).
    [CrossRef] [PubMed]
  11. Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993).
    [CrossRef] [PubMed]
  12. C. Egami, Y. Suzuki, O. Sugihara, N. Okamoto, H. Fujimura, K. Nakagawa, and H. Fujiwara, “Third-order resonant optical nonlinearity from trans–cis photoisomerization of an azo dye in a rigid matrix,” Appl. Phys. B 64, 471–478 (1997).
    [CrossRef]
  13. R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
    [CrossRef]
  14. D. Y. Kim, L. Li, R. J. Jeng, J. Kumar, M. A. Fiddy, and S. K. Tripathy, “Nonlinear optical photoresponsive polymer for reversible optical data storage,” in Organic and Biological Optoelectronics, P. M. Rentzepis, ed., Proc. SPIE 1853, 23–28 (1993).
    [CrossRef]
  15. S. Brasselet and J. Zyss, “Control of the polarization dependence of optically poled nonlinear polymer films,” Opt. Lett. 22, 1464–1466 (1997).
    [CrossRef]
  16. X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629–3931 (1996).
    [CrossRef]
  17. I. V. Tomov, B. VanWonterghem, A. S. Dvornikov, T. E. Dutton, and P. M. Rentzepis, “Degenerate four-wave mixing in azo-dye-doped polymer films,” J. Opt. Soc. Am. B 8, 1477–1482 (1991).
    [CrossRef]
  18. B. Volodin, K. Meerholz, Sandalphon, B. Kippelen, and N. Peyghambarian, “Azo dye-doped photorefractive polymers,” in Advanced Photonics Materials for Information Technology, S. Etemad, ed., Proc. SPIE 2144, 72–81 (1994).
    [CrossRef]
  19. C. Fiorini, F. Charra, J. Nunzi, and P. Raimond, “Quasi-permanent all-optical encoding of noncentrosymmetry in azo-dye polymers,” J. Opt. Soc. Am. B 14, 1984–2003 (1997).
    [CrossRef]
  20. F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second-harmonic generation in azo-dye polymers,” Opt. Lett. 18, 941–943 (1993).
    [CrossRef] [PubMed]
  21. R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383, 505–508 (1996).
    [CrossRef]
  22. Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).
  23. J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, and S. Tripathy, “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
    [CrossRef]
  24. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Spatial light modulation with an azobenzene-doped polymer by use of biphotonic holography,” Opt. Lett. 24, 841–843 (1999).
    [CrossRef]
  25. J. F. Rabek, Photochemistry and Photophysics (CRC, Boca Raton, Fla., 1990), pp. 120–141.
  26. H. Gömer, H. Gruen, and D. Schulte-Frohlinde, “Laser flash photolysis study of substituted azobenzenes. Evidence for a triplet state in viscous media,” J. Phys. Chem. 84, 3031–3039 (1980).
    [CrossRef]
  27. C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Macromol. Chem. 179, 2489–2506 (1978).
    [CrossRef]
  28. M. Guéna, Z. Y. Wu, M. L’Her, A. Pondaven, and C. Cadiou, “Grey scale memory in an optically addressed spatial light modulator with a Lu(Pc)2 doped layer,” Appl. Phys. Lett. 72, 765–767 (1998).
    [CrossRef]

1999 (2)

Y. Iino and P. Davis, “Switching of self-organized patterns in mutually modulating liquid crystal devices for beam control,” J. Appl. Phys. 85, 3399–3405 (1999).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Spatial light modulation with an azobenzene-doped polymer by use of biphotonic holography,” Opt. Lett. 24, 841–843 (1999).
[CrossRef]

1998 (4)

T. Poon, R. Juday, and T. Hara, “Spatial light modulators—research, development, and applications: introduction to the feature issue,” Appl. Opt. 37, 7471 (1998).
[CrossRef]

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, and S. Tripathy, “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

M. Guéna, Z. Y. Wu, M. L’Her, A. Pondaven, and C. Cadiou, “Grey scale memory in an optically addressed spatial light modulator with a Lu(Pc)2 doped layer,” Appl. Phys. Lett. 72, 765–767 (1998).
[CrossRef]

1997 (3)

1996 (2)

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383, 505–508 (1996).
[CrossRef]

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629–3931 (1996).
[CrossRef]

1995 (1)

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

1994 (2)

B. Volodin, K. Meerholz, Sandalphon, B. Kippelen, and N. Peyghambarian, “Azo dye-doped photorefractive polymers,” in Advanced Photonics Materials for Information Technology, S. Etemad, ed., Proc. SPIE 2144, 72–81 (1994).
[CrossRef]

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

1993 (5)

1992 (1)

1991 (1)

1988 (1)

1987 (1)

1983 (1)

1980 (1)

H. Gömer, H. Gruen, and D. Schulte-Frohlinde, “Laser flash photolysis study of substituted azobenzenes. Evidence for a triplet state in viscous media,” J. Phys. Chem. 84, 3031–3039 (1980).
[CrossRef]

1978 (1)

C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Macromol. Chem. 179, 2489–2506 (1978).
[CrossRef]

1970 (1)

J. D. Margerum, J. Nimoy, and S.-Y. Wong, “Reversible ultraviolet imaging with liquid crystals,” Appl. Phys. Lett. 17, 51–53 (1970).
[CrossRef]

Akkara, J. A.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

Aranda, F. J.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

Berg, R. H.

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383, 505–508 (1996).
[CrossRef]

Birge, R. R.

Blumer, R.

Brasselet, S.

Cadiou, C.

M. Guéna, Z. Y. Wu, M. L’Her, A. Pondaven, and C. Cadiou, “Grey scale memory in an optically addressed spatial light modulator with a Lu(Pc)2 doped layer,” Appl. Phys. Lett. 72, 765–767 (1998).
[CrossRef]

Chang, M.-W.

Charra, F.

Chen, Z.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993).
[CrossRef] [PubMed]

Clark III, W. W.

Davis, P.

Y. Iino and P. Davis, “Switching of self-organized patterns in mutually modulating liquid crystal devices for beam control,” J. Appl. Phys. 85, 3399–3405 (1999).
[CrossRef]

DeCristofano, B. S.

Dutton, T. E.

Dvornikov, A. S.

Egami, C.

C. Egami, Y. Suzuki, O. Sugihara, N. Okamoto, H. Fujimura, K. Nakagawa, and H. Fujiwara, “Third-order resonant optical nonlinearity from trans–cis photoisomerization of an azo dye in a rigid matrix,” Appl. Phys. B 64, 471–478 (1997).
[CrossRef]

Eisenbach, C. D.

C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Macromol. Chem. 179, 2489–2506 (1978).
[CrossRef]

Fiddy, M. A.

D. Y. Kim, L. Li, R. J. Jeng, J. Kumar, M. A. Fiddy, and S. K. Tripathy, “Nonlinear optical photoresponsive polymer for reversible optical data storage,” in Organic and Biological Optoelectronics, P. M. Rentzepis, ed., Proc. SPIE 1853, 23–28 (1993).
[CrossRef]

Fiorini, C.

Friesem, A. A.

Fujimura, H.

C. Egami, Y. Suzuki, O. Sugihara, N. Okamoto, H. Fujimura, K. Nakagawa, and H. Fujiwara, “Third-order resonant optical nonlinearity from trans–cis photoisomerization of an azo dye in a rigid matrix,” Appl. Phys. B 64, 471–478 (1997).
[CrossRef]

Fujiwara, H.

C. Egami, Y. Suzuki, O. Sugihara, N. Okamoto, H. Fujimura, K. Nakagawa, and H. Fujiwara, “Third-order resonant optical nonlinearity from trans–cis photoisomerization of an azo dye in a rigid matrix,” Appl. Phys. B 64, 471–478 (1997).
[CrossRef]

Garimella, R.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

Gömer, H.

H. Gömer, H. Gruen, and D. Schulte-Frohlinde, “Laser flash photolysis study of substituted azobenzenes. Evidence for a triplet state in viscous media,” J. Phys. Chem. 84, 3031–3039 (1980).
[CrossRef]

Gross, R. B.

Gruen, H.

H. Gömer, H. Gruen, and D. Schulte-Frohlinde, “Laser flash photolysis study of substituted azobenzenes. Evidence for a triplet state in viscous media,” J. Phys. Chem. 84, 3031–3039 (1980).
[CrossRef]

Guéna, M.

M. Guéna, Z. Y. Wu, M. L’Her, A. Pondaven, and C. Cadiou, “Grey scale memory in an optically addressed spatial light modulator with a Lu(Pc)2 doped layer,” Appl. Phys. Lett. 72, 765–767 (1998).
[CrossRef]

Günter, P.

Hall Jr., H. K.

Hara, T.

Hsu, K. Y.

Hvilsted, S.

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383, 505–508 (1996).
[CrossRef]

Idiart, E.

Iino, Y.

Y. Iino and P. Davis, “Switching of self-organized patterns in mutually modulating liquid crystal devices for beam control,” J. Appl. Phys. 85, 3399–3405 (1999).
[CrossRef]

Jeng, R. J.

D. Y. Kim, L. Li, R. J. Jeng, J. Kumar, M. A. Fiddy, and S. K. Tripathy, “Nonlinear optical photoresponsive polymer for reversible optical data storage,” in Organic and Biological Optoelectronics, P. M. Rentzepis, ed., Proc. SPIE 1853, 23–28 (1993).
[CrossRef]

Jiang, X.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, and S. Tripathy, “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

Jiang, X. L.

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629–3931 (1996).
[CrossRef]

Juday, R.

Kajzar, F.

Kaplan, D. L.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

Kim, D.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, and S. Tripathy, “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

Kim, D. Y.

D. Y. Kim, L. Li, R. J. Jeng, J. Kumar, M. A. Fiddy, and S. K. Tripathy, “Nonlinear optical photoresponsive polymer for reversible optical data storage,” in Organic and Biological Optoelectronics, P. M. Rentzepis, ed., Proc. SPIE 1853, 23–28 (1993).
[CrossRef]

Kimball, B. R.

Kippelen, B.

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

B. Volodin, K. Meerholz, Sandalphon, B. Kippelen, and N. Peyghambarian, “Azo dye-doped photorefractive polymers,” in Advanced Photonics Materials for Information Technology, S. Etemad, ed., Proc. SPIE 2144, 72–81 (1994).
[CrossRef]

Krongauz, V. A.

Kumar, J.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, and S. Tripathy, “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629–3931 (1996).
[CrossRef]

D. Y. Kim, L. Li, R. J. Jeng, J. Kumar, M. A. Fiddy, and S. K. Tripathy, “Nonlinear optical photoresponsive polymer for reversible optical data storage,” in Organic and Biological Optoelectronics, P. M. Rentzepis, ed., Proc. SPIE 1853, 23–28 (1993).
[CrossRef]

L’Her, M.

M. Guéna, Z. Y. Wu, M. L’Her, A. Pondaven, and C. Cadiou, “Grey scale memory in an optically addressed spatial light modulator with a Lu(Pc)2 doped layer,” Appl. Phys. Lett. 72, 765–767 (1998).
[CrossRef]

Lee, T.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, and S. Tripathy, “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

Li, L.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, and S. Tripathy, “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629–3931 (1996).
[CrossRef]

D. Y. Kim, L. Li, R. J. Jeng, J. Kumar, M. A. Fiddy, and S. K. Tripathy, “Nonlinear optical photoresponsive polymer for reversible optical data storage,” in Organic and Biological Optoelectronics, P. M. Rentzepis, ed., Proc. SPIE 1853, 23–28 (1993).
[CrossRef]

Lyon, S. R.

Margerum, J. D.

J. D. Margerum, J. Nimoy, and S.-Y. Wong, “Reversible ultraviolet imaging with liquid crystals,” Appl. Phys. Lett. 17, 51–53 (1970).
[CrossRef]

Marrakchi, A.

Matsuda, H.

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

McCarthy, N. F.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

Meerholz, K.

B. Volodin, K. Meerholz, Sandalphon, B. Kippelen, and N. Peyghambarian, “Azo dye-doped photorefractive polymers,” in Advanced Photonics Materials for Information Technology, S. Etemad, ed., Proc. SPIE 2144, 72–81 (1994).
[CrossRef]

Nakagawa, K.

C. Egami, Y. Suzuki, O. Sugihara, N. Okamoto, H. Fujimura, K. Nakagawa, and H. Fujiwara, “Third-order resonant optical nonlinearity from trans–cis photoisomerization of an azo dye in a rigid matrix,” Appl. Phys. B 64, 471–478 (1997).
[CrossRef]

Nakashima, M.

Neurgaonkar, R. R.

Nimoy, J.

J. D. Margerum, J. Nimoy, and S.-Y. Wong, “Reversible ultraviolet imaging with liquid crystals,” Appl. Phys. Lett. 17, 51–53 (1970).
[CrossRef]

Nunzi, J.

Nunzi, J. M.

Okamoto, N.

C. Egami, Y. Suzuki, O. Sugihara, N. Okamoto, H. Fujimura, K. Nakagawa, and H. Fujiwara, “Third-order resonant optical nonlinearity from trans–cis photoisomerization of an azo dye in a rigid matrix,” Appl. Phys. B 64, 471–478 (1997).
[CrossRef]

Padias, A. B.

Peyghambarian, N.

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

B. Volodin, K. Meerholz, Sandalphon, B. Kippelen, and N. Peyghambarian, “Azo dye-doped photorefractive polymers,” in Advanced Photonics Materials for Information Technology, S. Etemad, ed., Proc. SPIE 2144, 72–81 (1994).
[CrossRef]

Pondaven, A.

M. Guéna, Z. Y. Wu, M. L’Her, A. Pondaven, and C. Cadiou, “Grey scale memory in an optically addressed spatial light modulator with a Lu(Pc)2 doped layer,” Appl. Phys. Lett. 72, 765–767 (1998).
[CrossRef]

Poon, T.

Psaltis, D.

Raimond, P.

Ramanujam, P. S.

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383, 505–508 (1996).
[CrossRef]

Rangel-Rojo, R.

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

Rao, D. Narayana

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

Rao, D. V. G. L. N.

Rentzepis, P. M.

Roach, J. F.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

Salamo, G. J.

Sandalphon,

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

B. Volodin, K. Meerholz, Sandalphon, B. Kippelen, and N. Peyghambarian, “Azo dye-doped photorefractive polymers,” in Advanced Photonics Materials for Information Technology, S. Etemad, ed., Proc. SPIE 2144, 72–81 (1994).
[CrossRef]

Schulte-Frohlinde, D.

H. Gömer, H. Gruen, and D. Schulte-Frohlinde, “Laser flash photolysis study of substituted azobenzenes. Evidence for a triplet state in viscous media,” J. Phys. Chem. 84, 3031–3039 (1980).
[CrossRef]

Sharp, E. J.

Shi, Y.

Song, Q. W.

Sugihara, O.

C. Egami, Y. Suzuki, O. Sugihara, N. Okamoto, H. Fujimura, K. Nakagawa, and H. Fujiwara, “Third-order resonant optical nonlinearity from trans–cis photoisomerization of an azo dye in a rigid matrix,” Appl. Phys. B 64, 471–478 (1997).
[CrossRef]

Sun, C.-C.

Suzuki, Y.

C. Egami, Y. Suzuki, O. Sugihara, N. Okamoto, H. Fujimura, K. Nakagawa, and H. Fujiwara, “Third-order resonant optical nonlinearity from trans–cis photoisomerization of an azo dye in a rigid matrix,” Appl. Phys. B 64, 471–478 (1997).
[CrossRef]

Tanguay Jr., A. R.

Tomov, I. V.

Tripathy, S.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, and S. Tripathy, “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

Tripathy, S. K.

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629–3931 (1996).
[CrossRef]

D. Y. Kim, L. Li, R. J. Jeng, J. Kumar, M. A. Fiddy, and S. K. Tripathy, “Nonlinear optical photoresponsive polymer for reversible optical data storage,” in Organic and Biological Optoelectronics, P. M. Rentzepis, ed., Proc. SPIE 1853, 23–28 (1993).
[CrossRef]

VanWonterghem, B.

Voit, E.

Volodin, B.

B. Volodin, K. Meerholz, Sandalphon, B. Kippelen, and N. Peyghambarian, “Azo dye-doped photorefractive polymers,” in Advanced Photonics Materials for Information Technology, S. Etemad, ed., Proc. SPIE 2144, 72–81 (1994).
[CrossRef]

Weiss, V.

Wong, S.-Y.

J. D. Margerum, J. Nimoy, and S.-Y. Wong, “Reversible ultraviolet imaging with liquid crystals,” Appl. Phys. Lett. 17, 51–53 (1970).
[CrossRef]

Wood, G. L.

Wu, P.

Wu, Z. Y.

M. Guéna, Z. Y. Wu, M. L’Her, A. Pondaven, and C. Cadiou, “Grey scale memory in an optically addressed spatial light modulator with a Lu(Pc)2 doped layer,” Appl. Phys. Lett. 72, 765–767 (1998).
[CrossRef]

Yamada, S.

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

Yankelevich, D.

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

Zhang, C.

Zyss, J.

Appl. Opt. (2)

Appl. Phys. B (1)

C. Egami, Y. Suzuki, O. Sugihara, N. Okamoto, H. Fujimura, K. Nakagawa, and H. Fujiwara, “Third-order resonant optical nonlinearity from trans–cis photoisomerization of an azo dye in a rigid matrix,” Appl. Phys. B 64, 471–478 (1997).
[CrossRef]

Appl. Phys. Lett. (6)

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

J. D. Margerum, J. Nimoy, and S.-Y. Wong, “Reversible ultraviolet imaging with liquid crystals,” Appl. Phys. Lett. 17, 51–53 (1970).
[CrossRef]

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629–3931 (1996).
[CrossRef]

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, and S. Tripathy, “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

M. Guéna, Z. Y. Wu, M. L’Her, A. Pondaven, and C. Cadiou, “Grey scale memory in an optically addressed spatial light modulator with a Lu(Pc)2 doped layer,” Appl. Phys. Lett. 72, 765–767 (1998).
[CrossRef]

J. Appl. Phys. (1)

Y. Iino and P. Davis, “Switching of self-organized patterns in mutually modulating liquid crystal devices for beam control,” J. Appl. Phys. 85, 3399–3405 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

H. Gömer, H. Gruen, and D. Schulte-Frohlinde, “Laser flash photolysis study of substituted azobenzenes. Evidence for a triplet state in viscous media,” J. Phys. Chem. 84, 3031–3039 (1980).
[CrossRef]

Macromol. Chem. (1)

C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Macromol. Chem. 179, 2489–2506 (1978).
[CrossRef]

Nature (1)

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383, 505–508 (1996).
[CrossRef]

Opt. Lett. (10)

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second-harmonic generation in azo-dye polymers,” Opt. Lett. 18, 941–943 (1993).
[CrossRef] [PubMed]

S. Brasselet and J. Zyss, “Control of the polarization dependence of optically poled nonlinear polymer films,” Opt. Lett. 22, 1464–1466 (1997).
[CrossRef]

E. J. Sharp, G. L. Wood, W. W. Clark III, G. J. Salamo, and R. R. Neurgaonkar, “Incoherent-to-coherent conversion using a photorefractive self-pumped phase conjugator,” Opt. Lett. 17, 207–209 (1992).
[CrossRef] [PubMed]

A. Marrakchi, “Photorefractive spatial light modulation based on enhanced self-diffraction in sillenite crystals,” Opt. Lett. 13, 654–656 (1988).
[CrossRef] [PubMed]

E. Voit and P. Günter, “Photorefractive spatial light modulation by anisotropic self-diffraction in KNbO3 crystals,” Opt. Lett. 12, 769–771 (1987).
[CrossRef] [PubMed]

C.-C. Sun, M.-W. Chang, and K. Y. Hsu, “Contrast-reversible photorefractive incoherent-to-coherent optical converter by using an anisotropic strong volume hologram,” Opt. Lett. 18, 655–657 (1993).
[CrossRef] [PubMed]

V. Weiss, A. A. Friesem, and V. A. Krongauz, “Holographic recording and all-optical modulation in photochromic polymers,” Opt. Lett. 18, 1089–1091 (1993).
[CrossRef] [PubMed]

Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993).
[CrossRef] [PubMed]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Spatial light modulation with an azobenzene-doped polymer by use of biphotonic holography,” Opt. Lett. 24, 841–843 (1999).
[CrossRef]

Proc. SPIE (2)

D. Y. Kim, L. Li, R. J. Jeng, J. Kumar, M. A. Fiddy, and S. K. Tripathy, “Nonlinear optical photoresponsive polymer for reversible optical data storage,” in Organic and Biological Optoelectronics, P. M. Rentzepis, ed., Proc. SPIE 1853, 23–28 (1993).
[CrossRef]

B. Volodin, K. Meerholz, Sandalphon, B. Kippelen, and N. Peyghambarian, “Azo dye-doped photorefractive polymers,” in Advanced Photonics Materials for Information Technology, S. Etemad, ed., Proc. SPIE 2144, 72–81 (1994).
[CrossRef]

Other (1)

J. F. Rabek, Photochemistry and Photophysics (CRC, Boca Raton, Fla., 1990), pp. 120–141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Theoretical grating contrast curves for both steady and peak values as functions of A1I1 and A2I2. Note that the figures labeled by the curves for both the steady and the peak values are the values of A2I2 and that N0=1 is assumed.

Fig. 2
Fig. 2

Illustration of a SLM device with functions of output-sign control and self-protective diffraction limiting.

Fig. 3
Fig. 3

Experimental setup for investigation of the diffraction properties of SLM based on biphoton holography.

Fig. 4
Fig. 4

Temporal curve of SLM diffraction efficiency.

Fig. 5
Fig. 5

Display of diffraction efficiencies of SLM as a function of the 442-nm light intensity. Circles, steady-state values when both the blue and the red lights are on; triangles, peak values when the blue light is blocked; solid curves, theoretical best fits of the experimental results.

Fig. 6
Fig. 6

Experimental arrangement for incoherent-to-coherent conversion of SLM: W, White-light source; F, bandpass filter; G, matte glass; M, mask; L’s, lenses; S, sample; Ia,Ib, coherent beams; I1, incoherent light.

Fig. 7
Fig. 7

Image readouts of incoherent-to-coherent conversion. (a) Input image, (b) coherent replica when the coherent and the incoherent lights are turned on, (c) coherent replica after the incoherent light is turned off.

Fig. 8
Fig. 8

Sign change of image readout: (a), (b) a weak blue beam (intensity, 0.12 mW/cm2); (c), (d) a strong blue beam (intensity, 24 mW/cm2). (a), (c) Both the blue and the red beams are turned on; (b), (d) the blue beam is blocked.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

dN1dt=-σ1ϕ1I1ω1 N1+σ2ϕ2I2ω2+1τN2,
N1+N2=N0,
N1=1+A2I21+A1I1+A2I2 N0,
N2=A1I11+A1I1+A2I2 N0.
ΔNi=NiI2ΔI2.
Gs=ΔN2=A1I1 A2I2N0(1+A1I1+A2I2)2.
dN2dt=-σ2ϕ2I2ω2+1τN2,N1+N2=N0.
Gp=ΔN2=A1I1A2I2N0(1+A1I1+A2I2)(1+A2I2)×exp-A1I11+A1I1+A2I2.
GsI1=A1A2I2N0(1+A1I1+A2I2)21-2A1I11+A1I1+A2I2,
GpI1=A1A2I2N0(1+A1I1+A2I2)(1+A2I2)×1-A1I11+A1I1+A2I22exp-A1I11+A1I1+A2I2.

Metrics