Abstract

A two-dimensional photonic crystal patterned into a thin dielectric slab waveguide is shown to alter drastically the lifetime of spontaneous emission as well as the radiation pattern. This means that although the light extraction efficiency can be greatly enhanced, inhibited spontaneous emission within the photonic bandgap can result in low power output from such a structure. Strongly inhibited emission is found within the photonic bandgap as well as enhanced emission into the conduction band modes for certain geometries. Coupled with enhanced extraction efficiency in the photonic conduction band, this results in the possibility of a structure with increased total power efficiency.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
    [CrossRef]
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  5. I. Schnitzer, E. Yablonovitch, C. Caneau, T. Gmitter, and A. Scherer, “30-percent external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
    [CrossRef]
  6. E. Schubert, Y. Wang, A. Cho, L. Tu, and G. Zidzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
    [CrossRef]
  7. E. Yablonovitch and T. Gmitter, “Photonic band structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
    [CrossRef] [PubMed]
  8. J. Martorell and N. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1800 (1990).
    [CrossRef] [PubMed]
  9. E. Petrov, V. Bogomolov, I. Kalosha, and S. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
    [CrossRef]
  10. S. Gaponenko, V. Bogomolov, E. Petrov, A. Kapitonov, D. Yarotsky, I. Kalosha, A. Eychmueller, A. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Technol. 17, 2128–2137 (1999).
    [CrossRef]
  11. S. Fan, P. Villeneuve, J. Joannopoulos, and E. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
    [CrossRef]
  12. T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. Barkou, “Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure esti-mated using a new effective-index model,” IEEE J. Quantum Electron. 34, 2308–2313 (1998).
    [CrossRef]
  13. X. Feng and Y. Arakawa, “Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal,” IEEE J. Quantum Electron. 32, 535–542 (1996).
    [CrossRef]
  14. S. John and K. Busch, “Photonic bandgap formation and tunability in certain self-organizing systems,” J. Lightwave Technol. 17, 1931–1943 (1999).
    [CrossRef]
  15. Y. Xu, J. Vuckovic, R. Lee, O. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16, 465–474 (1999).
    [CrossRef]
  16. J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
    [CrossRef]
  17. Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, Art. No. 33807 (2000).
    [CrossRef]
  18. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  19. C. Furse and O. Gandhi, “Why the DFT is faster than the FFT for FDTD time-to-frequency domain conversions,” IEEE Microwave Guid. Wave Lett. 5, 326–328 (1995).
    [CrossRef]
  20. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
    [CrossRef]
  21. C. Cheng, V. Arbet-Engels, E. Yablonovitch, and A. Scherer, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sci. Technol. B 14, 4110–4114 (1996).
    [CrossRef]
  22. A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” J. Vac. Sci. Technol. B 16, 3906–3910 (1998).
    [CrossRef]
  23. M. Boroditsky, R. Vrijen, T. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999).
    [CrossRef]
  24. T. Baba, K. Inoshita, H. Tanaka, J. Yonekura, M. Ariga, A. Matsutani, T. Miyamoto, F. Koyama, and K. Iga, “Strong enhancement of light extraction efficiency in GaInAsP 2-D-arranged microcolumns,” J. Lightwave Technol. 17, 2113–2120 (1999).
    [CrossRef]

2000 (1)

Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, Art. No. 33807 (2000).
[CrossRef]

1999 (7)

S. John and K. Busch, “Photonic bandgap formation and tunability in certain self-organizing systems,” J. Lightwave Technol. 17, 1931–1943 (1999).
[CrossRef]

Y. Xu, J. Vuckovic, R. Lee, O. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16, 465–474 (1999).
[CrossRef]

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

S. Gaponenko, V. Bogomolov, E. Petrov, A. Kapitonov, D. Yarotsky, I. Kalosha, A. Eychmueller, A. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Technol. 17, 2128–2137 (1999).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[CrossRef]

M. Boroditsky, R. Vrijen, T. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999).
[CrossRef]

T. Baba, K. Inoshita, H. Tanaka, J. Yonekura, M. Ariga, A. Matsutani, T. Miyamoto, F. Koyama, and K. Iga, “Strong enhancement of light extraction efficiency in GaInAsP 2-D-arranged microcolumns,” J. Lightwave Technol. 17, 2113–2120 (1999).
[CrossRef]

1998 (3)

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” J. Vac. Sci. Technol. B 16, 3906–3910 (1998).
[CrossRef]

T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. Barkou, “Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure esti-mated using a new effective-index model,” IEEE J. Quantum Electron. 34, 2308–2313 (1998).
[CrossRef]

E. Petrov, V. Bogomolov, I. Kalosha, and S. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[CrossRef]

1997 (1)

S. Fan, P. Villeneuve, J. Joannopoulos, and E. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

1996 (2)

X. Feng and Y. Arakawa, “Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal,” IEEE J. Quantum Electron. 32, 535–542 (1996).
[CrossRef]

C. Cheng, V. Arbet-Engels, E. Yablonovitch, and A. Scherer, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sci. Technol. B 14, 4110–4114 (1996).
[CrossRef]

1995 (1)

C. Furse and O. Gandhi, “Why the DFT is faster than the FFT for FDTD time-to-frequency domain conversions,” IEEE Microwave Guid. Wave Lett. 5, 326–328 (1995).
[CrossRef]

1994 (1)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1993 (1)

I. Schnitzer, E. Yablonovitch, C. Caneau, T. Gmitter, and A. Scherer, “30-percent external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

1992 (1)

E. Schubert, Y. Wang, A. Cho, L. Tu, and G. Zidzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

1990 (1)

J. Martorell and N. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1800 (1990).
[CrossRef] [PubMed]

1989 (1)

E. Yablonovitch and T. Gmitter, “Photonic band structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

1981 (1)

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

1946 (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Arakawa, Y.

X. Feng and Y. Arakawa, “Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal,” IEEE J. Quantum Electron. 32, 535–542 (1996).
[CrossRef]

Arbet-Engels, V.

C. Cheng, V. Arbet-Engels, E. Yablonovitch, and A. Scherer, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sci. Technol. B 14, 4110–4114 (1996).
[CrossRef]

Ariga, M.

Baba, T.

Barkou, S.

T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. Barkou, “Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure esti-mated using a new effective-index model,” IEEE J. Quantum Electron. 34, 2308–2313 (1998).
[CrossRef]

Berenger, J.

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Bhat, R.

Bjarklev, A.

T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. Barkou, “Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure esti-mated using a new effective-index model,” IEEE J. Quantum Electron. 34, 2308–2313 (1998).
[CrossRef]

Bogomolov, V.

Boroditsky, M.

Broeng, J.

T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. Barkou, “Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure esti-mated using a new effective-index model,” IEEE J. Quantum Electron. 34, 2308–2313 (1998).
[CrossRef]

Busch, K.

Caneau, C.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. Gmitter, and A. Scherer, “30-percent external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

Cheng, C.

C. Cheng, V. Arbet-Engels, E. Yablonovitch, and A. Scherer, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sci. Technol. B 14, 4110–4114 (1996).
[CrossRef]

Cho, A.

E. Schubert, Y. Wang, A. Cho, L. Tu, and G. Zidzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Coccioli, R.

D’Urso, B.

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” J. Vac. Sci. Technol. B 16, 3906–3910 (1998).
[CrossRef]

Dridi, K.

T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. Barkou, “Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure esti-mated using a new effective-index model,” IEEE J. Quantum Electron. 34, 2308–2313 (1998).
[CrossRef]

Eychmueller, A.

Fan, S.

S. Fan, P. Villeneuve, J. Joannopoulos, and E. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

Feng, X.

X. Feng and Y. Arakawa, “Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal,” IEEE J. Quantum Electron. 32, 535–542 (1996).
[CrossRef]

Furse, C.

C. Furse and O. Gandhi, “Why the DFT is faster than the FFT for FDTD time-to-frequency domain conversions,” IEEE Microwave Guid. Wave Lett. 5, 326–328 (1995).
[CrossRef]

Gandhi, O.

C. Furse and O. Gandhi, “Why the DFT is faster than the FFT for FDTD time-to-frequency domain conversions,” IEEE Microwave Guid. Wave Lett. 5, 326–328 (1995).
[CrossRef]

Gaponenko, S.

Gindele, F.

Gmitter, T.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. Gmitter, and A. Scherer, “30-percent external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

E. Yablonovitch and T. Gmitter, “Photonic band structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[CrossRef] [PubMed]

Hwang, J.

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Iga, K.

Inoshita, K.

Joannopoulos, J.

S. Fan, P. Villeneuve, J. Joannopoulos, and E. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

John, S.

S. John and K. Busch, “Photonic bandgap formation and tunability in certain self-organizing systems,” J. Lightwave Technol. 17, 1931–1943 (1999).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Kalosha, I.

Kapitonov, A.

Kleppner, D.

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

Koyama, F.

Krauss, T.

Lawandy, N.

J. Martorell and N. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1800 (1990).
[CrossRef] [PubMed]

Lee, R.

Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, Art. No. 33807 (2000).
[CrossRef]

Y. Xu, J. Vuckovic, R. Lee, O. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16, 465–474 (1999).
[CrossRef]

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” J. Vac. Sci. Technol. B 16, 3906–3910 (1998).
[CrossRef]

Lee, Y.

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Martorell, J.

J. Martorell and N. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1800 (1990).
[CrossRef] [PubMed]

Matsutani, A.

McGilp, J.

Miyamoto, T.

Painter, O.

Petrov, E.

Purcell, E.

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Rogach, A.

Ryu, H.

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Scherer, A.

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[CrossRef]

Y. Xu, J. Vuckovic, R. Lee, O. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16, 465–474 (1999).
[CrossRef]

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” J. Vac. Sci. Technol. B 16, 3906–3910 (1998).
[CrossRef]

C. Cheng, V. Arbet-Engels, E. Yablonovitch, and A. Scherer, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sci. Technol. B 14, 4110–4114 (1996).
[CrossRef]

I. Schnitzer, E. Yablonovitch, C. Caneau, T. Gmitter, and A. Scherer, “30-percent external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

Schnitzer, I.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. Gmitter, and A. Scherer, “30-percent external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

Schubert, E.

S. Fan, P. Villeneuve, J. Joannopoulos, and E. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

E. Schubert, Y. Wang, A. Cho, L. Tu, and G. Zidzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Søndergaard, T.

T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. Barkou, “Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure esti-mated using a new effective-index model,” IEEE J. Quantum Electron. 34, 2308–2313 (1998).
[CrossRef]

Tanaka, H.

Tu, L.

E. Schubert, Y. Wang, A. Cho, L. Tu, and G. Zidzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Villeneuve, P.

S. Fan, P. Villeneuve, J. Joannopoulos, and E. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

Vrijen, R.

Vuckovic, J.

Wang, Y.

E. Schubert, Y. Wang, A. Cho, L. Tu, and G. Zidzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Woggon, U.

Xu, Y.

Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, Art. No. 33807 (2000).
[CrossRef]

Y. Xu, J. Vuckovic, R. Lee, O. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16, 465–474 (1999).
[CrossRef]

Yablonovitch, E.

M. Boroditsky, R. Vrijen, T. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999).
[CrossRef]

C. Cheng, V. Arbet-Engels, E. Yablonovitch, and A. Scherer, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sci. Technol. B 14, 4110–4114 (1996).
[CrossRef]

I. Schnitzer, E. Yablonovitch, C. Caneau, T. Gmitter, and A. Scherer, “30-percent external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

E. Yablonovitch and T. Gmitter, “Photonic band structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yariv, A.

Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, Art. No. 33807 (2000).
[CrossRef]

Y. Xu, J. Vuckovic, R. Lee, O. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16, 465–474 (1999).
[CrossRef]

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” J. Vac. Sci. Technol. B 16, 3906–3910 (1998).
[CrossRef]

Yarotsky, D.

Yonekura, J.

Zidzik, G.

E. Schubert, Y. Wang, A. Cho, L. Tu, and G. Zidzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Appl. Phys. Lett. (2)

I. Schnitzer, E. Yablonovitch, C. Caneau, T. Gmitter, and A. Scherer, “30-percent external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

E. Schubert, Y. Wang, A. Cho, L. Tu, and G. Zidzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. Barkou, “Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure esti-mated using a new effective-index model,” IEEE J. Quantum Electron. 34, 2308–2313 (1998).
[CrossRef]

X. Feng and Y. Arakawa, “Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal,” IEEE J. Quantum Electron. 32, 535–542 (1996).
[CrossRef]

IEEE Microwave Guid. Wave Lett. (1)

C. Furse and O. Gandhi, “Why the DFT is faster than the FFT for FDTD time-to-frequency domain conversions,” IEEE Microwave Guid. Wave Lett. 5, 326–328 (1995).
[CrossRef]

J. Comput. Phys. (1)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. B (2)

C. Cheng, V. Arbet-Engels, E. Yablonovitch, and A. Scherer, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sci. Technol. B 14, 4110–4114 (1996).
[CrossRef]

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” J. Vac. Sci. Technol. B 16, 3906–3910 (1998).
[CrossRef]

Phys. Rev. (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, Art. No. 33807 (2000).
[CrossRef]

Phys. Rev. B (1)

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Phys. Rev. Lett. (7)

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch and T. Gmitter, “Photonic band structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[CrossRef] [PubMed]

J. Martorell and N. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1800 (1990).
[CrossRef] [PubMed]

E. Petrov, V. Bogomolov, I. Kalosha, and S. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[CrossRef]

S. Fan, P. Villeneuve, J. Joannopoulos, and E. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Position dependence of the spontaneous-emission rate by use of a single-point dipole at different locations in the photonic crystal structure. (a) Schematic indicating the calculated dipole locations in the triangular lattice. (b) Spontaneous-emission-rate spectrum relative to the free-space rate for the different dipole locations.

Fig. 2
Fig. 2

(a) Schematic of the triangular lattice photonic crystal slab. (b) Calculated in-plane bandstructure with d/λ=0.25 and r/a=0.35 for TE-like modes. The shaded region corresponds to the unguided (extended) modes.

Fig. 3
Fig. 3

Spontaneous emission from a photonic crystal slab with d/a constant. Left, spontaneous-emission rate normalized to the free-space rate (logarithmic scale). Center, extraction (circles) and detection (triangles) efficiencies as defined in the text. The values for an unpatterned slab are indicated by the dashed line. Right, detection (triangles) and extraction (circles) rates (logarithmic scale) from a photonic crystal slab normalized to the rate for free space.

Fig. 4
Fig. 4

Variation in band-edge frequencies as a function of waveguide thickness d/a for a triangular lattice of holes with constant r/a=0.35, calculated with a three-dimensional finite-difference time-domain method.

Fig. 5
Fig. 5

Power extraction from a photonic crystal slab with d/λ constant. Left, spontaneous-emission rate (logarithmic scale) normalized to the value in a slab waveguide. Center, extraction (circle) and detection (triangle) efficiencies. The corresponding values for an unpatterned slab are indicated by the dashed line. Right, extraction rate (logarithmic scale) from a photonic crystal slab normalized to the rate for an unpatterned slab with the same thickness d/λ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ2E-(x)μ0 2Et2=μ0 2Pt2,
P(x, t)=d(t)δ(x-x0),
PcavPvacquantum=PcavPvacclassical=τvacτcav,

Metrics