Abstract

Single crystals of neodymium-doped barium chloroapatite have been grown by the Czochralski technique and evaluated as a laser medium. Among known Nd-doped apatites, the material studied is characterized by the longest luminescence lifetime, τ=0.375 ms, and one of the largest emission cross sections, σ=6×10-19 cm2. The product στ in this crystal, which is equal to 2.3×10-22 cm2 s, is apparently the largest of those of all Nd-doped laser crystals. Laser operation at 1053.8 nm with a slope efficiency of 25% and an intrinsic slope efficiency of 49% was obtained.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. B. Steinbrugge, T. Heningsen, R. H. Hopkins, R. Mazelsky, N. T. Melamed, E. P. Riedel, and G. W. Roland, “Laser properties of Nd3+ and Ho3+ doped crystals with the apatite structure,” Appl. Opt. 11, 999–1011 (1972).
    [CrossRef]
  2. X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+ doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett. 64, 10–12 (1994).
    [CrossRef]
  3. X. X. Zhang, P. Hong, G. B. Loutts, J. Lefaucher, M. Bass, and B. H. T. Chai, “Efficient laser performance of Nd3+:Sr5(PO4)3F at 1.059 and 1.328 nm,” Appl. Phys. Lett. 64, 3205–3207 (1994).
    [CrossRef]
  4. G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
    [CrossRef]
  5. S. A. Payne, B. H. T. Chai, W. L. Kway, L. D. DeLoach, L. K. Smith, G. Lutts, R. Peale, X. X. Zhang, G. D. Wilke, and W. F. Krupke, “New high cross section laser crystal: neodymium-doped strontium fluorovanadate,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper CPD12.
  6. P. Hong, X. X. Zhang, R. E. Peale, H. Weidner, M. Bass, and B. H. T. Chai, “Spectroscopic characteristics of Nd-doped strontium fluorovanadate and their relationship to laser performance,” J. Appl. Phys. 77, 294–300 (1995).
    [CrossRef]
  7. A. A. Kaminskii, Crystalline Lasers: Physical Properties and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).
  8. J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Alick, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys. 79, 1746–1758 (1996).
    [CrossRef]
  9. L. D. DeLoach, S. A. Payne, B. H. T. Chai, and G. Loutts, “Laser demonstration of neodymium-doped strontium chlorovanadate,” Appl. Phys. Lett. 65, 1208–1210 (1994).
    [CrossRef]
  10. C. Morrison and R. Leavitt, “Crystal field analysis of triply ionized rare earth ions in lanthanum trifluoride,” J. Chem. Phys. 71, 2366–2374 (1979).
    [CrossRef]
  11. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
    [CrossRef]
  12. J. M. Hughes, M. Cameron, and K. D. Crowley, “Structural variations in natural F, OH and Cl apatites,” Am. Mineral. 74, 870 (1989).
  13. M. Mathew, I. Mayer, B. Dickens, and L. Schroeder, “Substitution in barium fluorapatite,” J. Solid State Chem. 28, 79–95 (1979).
    [CrossRef]
  14. S. M. Stefanos, C. E. Bonner, Ch. Meegoda, W. J. Rodriguez, G. B. Loutts, “Energy levels and optical properties of Nd3+ in the Cs site of Ba5(PO4)3F (BFAP)” (to be published).
  15. L. Fornasiero, S. Kück, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals.” 2. YVO4, GdVO4, and Sr5(PO4)3F, Appl. Phys. B 67, 549–553 (1998).
    [CrossRef]

1998 (1)

L. Fornasiero, S. Kück, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals.” 2. YVO4, GdVO4, and Sr5(PO4)3F, Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

1997 (1)

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

1996 (1)

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Alick, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys. 79, 1746–1758 (1996).
[CrossRef]

1995 (1)

P. Hong, X. X. Zhang, R. E. Peale, H. Weidner, M. Bass, and B. H. T. Chai, “Spectroscopic characteristics of Nd-doped strontium fluorovanadate and their relationship to laser performance,” J. Appl. Phys. 77, 294–300 (1995).
[CrossRef]

1994 (3)

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+ doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett. 64, 10–12 (1994).
[CrossRef]

X. X. Zhang, P. Hong, G. B. Loutts, J. Lefaucher, M. Bass, and B. H. T. Chai, “Efficient laser performance of Nd3+:Sr5(PO4)3F at 1.059 and 1.328 nm,” Appl. Phys. Lett. 64, 3205–3207 (1994).
[CrossRef]

L. D. DeLoach, S. A. Payne, B. H. T. Chai, and G. Loutts, “Laser demonstration of neodymium-doped strontium chlorovanadate,” Appl. Phys. Lett. 65, 1208–1210 (1994).
[CrossRef]

1989 (1)

J. M. Hughes, M. Cameron, and K. D. Crowley, “Structural variations in natural F, OH and Cl apatites,” Am. Mineral. 74, 870 (1989).

1979 (2)

M. Mathew, I. Mayer, B. Dickens, and L. Schroeder, “Substitution in barium fluorapatite,” J. Solid State Chem. 28, 79–95 (1979).
[CrossRef]

C. Morrison and R. Leavitt, “Crystal field analysis of triply ionized rare earth ions in lanthanum trifluoride,” J. Chem. Phys. 71, 2366–2374 (1979).
[CrossRef]

1972 (1)

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Alick, T. H.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Alick, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys. 79, 1746–1758 (1996).
[CrossRef]

Bass, M.

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

P. Hong, X. X. Zhang, R. E. Peale, H. Weidner, M. Bass, and B. H. T. Chai, “Spectroscopic characteristics of Nd-doped strontium fluorovanadate and their relationship to laser performance,” J. Appl. Phys. 77, 294–300 (1995).
[CrossRef]

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+ doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett. 64, 10–12 (1994).
[CrossRef]

X. X. Zhang, P. Hong, G. B. Loutts, J. Lefaucher, M. Bass, and B. H. T. Chai, “Efficient laser performance of Nd3+:Sr5(PO4)3F at 1.059 and 1.328 nm,” Appl. Phys. Lett. 64, 3205–3207 (1994).
[CrossRef]

Bonner, C.

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

Cameron, M.

J. M. Hughes, M. Cameron, and K. D. Crowley, “Structural variations in natural F, OH and Cl apatites,” Am. Mineral. 74, 870 (1989).

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Chai, B. H. T.

L. Fornasiero, S. Kück, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals.” 2. YVO4, GdVO4, and Sr5(PO4)3F, Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Alick, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys. 79, 1746–1758 (1996).
[CrossRef]

P. Hong, X. X. Zhang, R. E. Peale, H. Weidner, M. Bass, and B. H. T. Chai, “Spectroscopic characteristics of Nd-doped strontium fluorovanadate and their relationship to laser performance,” J. Appl. Phys. 77, 294–300 (1995).
[CrossRef]

L. D. DeLoach, S. A. Payne, B. H. T. Chai, and G. Loutts, “Laser demonstration of neodymium-doped strontium chlorovanadate,” Appl. Phys. Lett. 65, 1208–1210 (1994).
[CrossRef]

X. X. Zhang, P. Hong, G. B. Loutts, J. Lefaucher, M. Bass, and B. H. T. Chai, “Efficient laser performance of Nd3+:Sr5(PO4)3F at 1.059 and 1.328 nm,” Appl. Phys. Lett. 64, 3205–3207 (1994).
[CrossRef]

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+ doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett. 64, 10–12 (1994).
[CrossRef]

Crowley, K. D.

J. M. Hughes, M. Cameron, and K. D. Crowley, “Structural variations in natural F, OH and Cl apatites,” Am. Mineral. 74, 870 (1989).

Curley, M.

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, B. H. T. Chai, and G. Loutts, “Laser demonstration of neodymium-doped strontium chlorovanadate,” Appl. Phys. Lett. 65, 1208–1210 (1994).
[CrossRef]

Dickens, B.

M. Mathew, I. Mayer, B. Dickens, and L. Schroeder, “Substitution in barium fluorapatite,” J. Solid State Chem. 28, 79–95 (1979).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Fornasiero, L.

L. Fornasiero, S. Kück, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals.” 2. YVO4, GdVO4, and Sr5(PO4)3F, Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

Gruber, J. B.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Alick, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys. 79, 1746–1758 (1996).
[CrossRef]

Heningsen, T.

Hong, P.

P. Hong, X. X. Zhang, R. E. Peale, H. Weidner, M. Bass, and B. H. T. Chai, “Spectroscopic characteristics of Nd-doped strontium fluorovanadate and their relationship to laser performance,” J. Appl. Phys. 77, 294–300 (1995).
[CrossRef]

X. X. Zhang, P. Hong, G. B. Loutts, J. Lefaucher, M. Bass, and B. H. T. Chai, “Efficient laser performance of Nd3+:Sr5(PO4)3F at 1.059 and 1.328 nm,” Appl. Phys. Lett. 64, 3205–3207 (1994).
[CrossRef]

Hopkins, R. H.

Hughes, J. M.

J. M. Hughes, M. Cameron, and K. D. Crowley, “Structural variations in natural F, OH and Cl apatites,” Am. Mineral. 74, 870 (1989).

Kück, S.

L. Fornasiero, S. Kück, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals.” 2. YVO4, GdVO4, and Sr5(PO4)3F, Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

Leavitt, R.

C. Morrison and R. Leavitt, “Crystal field analysis of triply ionized rare earth ions in lanthanum trifluoride,” J. Chem. Phys. 71, 2366–2374 (1979).
[CrossRef]

Lefaucher, J.

X. X. Zhang, P. Hong, G. B. Loutts, J. Lefaucher, M. Bass, and B. H. T. Chai, “Efficient laser performance of Nd3+:Sr5(PO4)3F at 1.059 and 1.328 nm,” Appl. Phys. Lett. 64, 3205–3207 (1994).
[CrossRef]

Loutts, G.

L. D. DeLoach, S. A. Payne, B. H. T. Chai, and G. Loutts, “Laser demonstration of neodymium-doped strontium chlorovanadate,” Appl. Phys. Lett. 65, 1208–1210 (1994).
[CrossRef]

Loutts, G. B.

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

X. X. Zhang, P. Hong, G. B. Loutts, J. Lefaucher, M. Bass, and B. H. T. Chai, “Efficient laser performance of Nd3+:Sr5(PO4)3F at 1.059 and 1.328 nm,” Appl. Phys. Lett. 64, 3205–3207 (1994).
[CrossRef]

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+ doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett. 64, 10–12 (1994).
[CrossRef]

Mathew, M.

M. Mathew, I. Mayer, B. Dickens, and L. Schroeder, “Substitution in barium fluorapatite,” J. Solid State Chem. 28, 79–95 (1979).
[CrossRef]

Mayer, I.

M. Mathew, I. Mayer, B. Dickens, and L. Schroeder, “Substitution in barium fluorapatite,” J. Solid State Chem. 28, 79–95 (1979).
[CrossRef]

Mazelsky, R.

Meegoda, C.

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

Melamed, N. T.

Morrison, C.

C. Morrison and R. Leavitt, “Crystal field analysis of triply ionized rare earth ions in lanthanum trifluoride,” J. Chem. Phys. 71, 2366–2374 (1979).
[CrossRef]

Morrison, C. A.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Alick, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys. 79, 1746–1758 (1996).
[CrossRef]

Nadler, M. P.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Alick, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys. 79, 1746–1758 (1996).
[CrossRef]

Noginov, M. A.

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

Noginova, N.

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

Payne, S. A.

L. D. DeLoach, S. A. Payne, B. H. T. Chai, and G. Loutts, “Laser demonstration of neodymium-doped strontium chlorovanadate,” Appl. Phys. Lett. 65, 1208–1210 (1994).
[CrossRef]

Peale, R. E.

P. Hong, X. X. Zhang, R. E. Peale, H. Weidner, M. Bass, and B. H. T. Chai, “Spectroscopic characteristics of Nd-doped strontium fluorovanadate and their relationship to laser performance,” J. Appl. Phys. 77, 294–300 (1995).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Rapaport, A.

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

Riedel, E. P.

Ries, H.

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

Roland, G. W.

Schroeder, L.

M. Mathew, I. Mayer, B. Dickens, and L. Schroeder, “Substitution in barium fluorapatite,” J. Solid State Chem. 28, 79–95 (1979).
[CrossRef]

Seltzer, M. D.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Alick, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys. 79, 1746–1758 (1996).
[CrossRef]

Steinbrugge, K. B.

Venkateswarlu, P.

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

Weidner, H.

P. Hong, X. X. Zhang, R. E. Peale, H. Weidner, M. Bass, and B. H. T. Chai, “Spectroscopic characteristics of Nd-doped strontium fluorovanadate and their relationship to laser performance,” J. Appl. Phys. 77, 294–300 (1995).
[CrossRef]

Wright, A. O.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Alick, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys. 79, 1746–1758 (1996).
[CrossRef]

Zhang, X. X.

P. Hong, X. X. Zhang, R. E. Peale, H. Weidner, M. Bass, and B. H. T. Chai, “Spectroscopic characteristics of Nd-doped strontium fluorovanadate and their relationship to laser performance,” J. Appl. Phys. 77, 294–300 (1995).
[CrossRef]

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+ doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett. 64, 10–12 (1994).
[CrossRef]

X. X. Zhang, P. Hong, G. B. Loutts, J. Lefaucher, M. Bass, and B. H. T. Chai, “Efficient laser performance of Nd3+:Sr5(PO4)3F at 1.059 and 1.328 nm,” Appl. Phys. Lett. 64, 3205–3207 (1994).
[CrossRef]

Am. Mineral. (1)

J. M. Hughes, M. Cameron, and K. D. Crowley, “Structural variations in natural F, OH and Cl apatites,” Am. Mineral. 74, 870 (1989).

Appl. Opt. (1)

Appl. Phys. B (1)

L. Fornasiero, S. Kück, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals.” 2. YVO4, GdVO4, and Sr5(PO4)3F, Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

Appl. Phys. Lett. (4)

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+ doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett. 64, 10–12 (1994).
[CrossRef]

X. X. Zhang, P. Hong, G. B. Loutts, J. Lefaucher, M. Bass, and B. H. T. Chai, “Efficient laser performance of Nd3+:Sr5(PO4)3F at 1.059 and 1.328 nm,” Appl. Phys. Lett. 64, 3205–3207 (1994).
[CrossRef]

G. B. Loutts, C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass, “Crystal growth, spectroscopic characterization, and laser performance of a new efficient laser material Nd:Ba5(PO4)3F,” Appl. Phys. Lett. 71, 303–305 (1997).
[CrossRef]

L. D. DeLoach, S. A. Payne, B. H. T. Chai, and G. Loutts, “Laser demonstration of neodymium-doped strontium chlorovanadate,” Appl. Phys. Lett. 65, 1208–1210 (1994).
[CrossRef]

J. Appl. Phys. (2)

P. Hong, X. X. Zhang, R. E. Peale, H. Weidner, M. Bass, and B. H. T. Chai, “Spectroscopic characteristics of Nd-doped strontium fluorovanadate and their relationship to laser performance,” J. Appl. Phys. 77, 294–300 (1995).
[CrossRef]

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Alick, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys. 79, 1746–1758 (1996).
[CrossRef]

J. Chem. Phys. (2)

C. Morrison and R. Leavitt, “Crystal field analysis of triply ionized rare earth ions in lanthanum trifluoride,” J. Chem. Phys. 71, 2366–2374 (1979).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

J. Solid State Chem. (1)

M. Mathew, I. Mayer, B. Dickens, and L. Schroeder, “Substitution in barium fluorapatite,” J. Solid State Chem. 28, 79–95 (1979).
[CrossRef]

Other (3)

S. M. Stefanos, C. E. Bonner, Ch. Meegoda, W. J. Rodriguez, G. B. Loutts, “Energy levels and optical properties of Nd3+ in the Cs site of Ba5(PO4)3F (BFAP)” (to be published).

A. A. Kaminskii, Crystalline Lasers: Physical Properties and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).

S. A. Payne, B. H. T. Chai, W. L. Kway, L. D. DeLoach, L. K. Smith, G. Lutts, R. Peale, X. X. Zhang, G. D. Wilke, and W. F. Krupke, “New high cross section laser crystal: neodymium-doped strontium fluorovanadate,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper CPD12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption spectrum in Nd:BCAP.

Fig. 2
Fig. 2

Emission decay kinetics in Nd(1%):BCAP.

Fig. 3
Fig. 3

Emission cross-section spectrum in Nd:BCAP.

Fig. 4
Fig. 4

Room-temperature diagram of Stark energy levels in Nd:BCAP. Positions of the levels were determined with an accuracy of ∼5 cm-1.

Fig. 5
Fig. 5

Input–output curves in the cw 1053.8-nm Nd:BCAP laser.

Tables (2)

Tables Icon

Table 1 Crystal-Field Parameters for Nd3+ in the Cs Site in BCAP

Tables Icon

Table 2 Calculated and Experimental Energy Levels for Nd3+ Ion in BCAP, BFAP, SFAP, and FAP in the Five Lowest Energy Manifolds

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

HCF=n evenm=-nn Bnm i=1N Cnm(ri),
Bnm=Anmri,
Cnm(i)=4π2n+11/2Ynm(ϕi, θi)
Anm=-e2Zj j Cnm(rj)rjn+1,
9BaCO3+3P2O5+BaCl22Ba5(PO4)3Cl+9CO2.
σ(λ)=I(λ)λ58τπ cn213 i=1,2,3I(λ)λdλ,
L=η1-η2η2T2-η1T1,
η0L+T1,2T1,2η1,2=0.49.

Metrics