Abstract

Strain-compensated double InGaAs quantum-well saturable Bragg reflectors (SBR’s) with high damage thresholds have been developed for use as mode-locking elements in high-average-power neodymium lasers. Nd:YVO4 lasers have been developed with these new SBR’s, which produce transform-limited pulses of 21-ps duration at 90 MHz and an average power of 20 W in a diffraction-limited output beam. The peak pulse power at an output power of 20 W was 10.6 kW. A comparison of the operating parameters of strained single and strain-compensated double-well SBR’s indicates that the damage threshold increased by a factor of at least 2–3. Long cavity laser variants were investigated to assess the limitations of further power scaling. At a repetition frequency of 36-MHz stable mode-locked pulses with peak pulse powers of 24.4 kW and pulse energies of 0.6 µJ could be generated.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chui, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
    [CrossRef] [PubMed]
  2. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
    [CrossRef]
  3. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996), and references therein.
    [CrossRef]
  4. J. D. Kafka, M. L. Watts, and J. W. Pieterse, “Synchronously pumped optical parametric oscillators with LiB3O5,” J. Opt. Soc. Am. B 12, 2147–2157 (1995).
    [CrossRef]
  5. B. Ruffing, A. Nebel, and R. Wallenstein, “A 20-W KTA-OPO synchronously pumped by a cw mode-locked Nd:YVO4 oscillator-amplifier system,” in Lasers and Electro-Optics, Vol. II of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CWB2.
  6. J. Aus der Au, S. F. Schaer, R. Paschotta, C. Honninger, and U. Keller, “High-power diode-pumped passively mode-locked Yb:YAG lasers,” Opt. Lett. 24, 1281–1283 (1999).
    [CrossRef]
  7. G. J. Spuhler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24, 528–530 (1999).
    [CrossRef]
  8. C. J. Howle, A. I. Ferguson, S. T. Lee, D. Burns, and M. D. Dawson, “A high power SBR mode-locked Nd:YLF laser,” in European Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CtuE3; T. Graf, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Multi-watt Nd:YVO4 laser, mode mocked by a saturable Bragg reflector and side pumped by a diode laser bar,” Opt. Commun. 159, 84–87 (1999).
    [CrossRef]
  9. C. A. Wang and H. K. Choi, “Organometallic vapor phase epitaxy of high performance strained-layer InGaAs-AlGaAs diode lasers,” IEEE J. Quantum Electron. 27, 681–686 (1991).
    [CrossRef]
  10. R. D. Dupuis and P. D. Dapkus, “Room-temperature operation of Ga(1−x)AlxAs/GaAs double-heterostructure lasers grown by metalorganic chemical vapor phase deposition,” Appl. Phys. Lett. 31, 466–468 (1977).
    [CrossRef]
  11. J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers. III. Preparation of almost perfect multilayers,” J. Cryst. Growth 32, 265–273 (1976).
    [CrossRef]
  12. R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, 322–324 (1985).
    [CrossRef]
  13. L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995); C. Hönninger, R. Pascotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
    [CrossRef]
  14. C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruhle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
    [CrossRef]
  15. ±2% for nonrotated MOCVD growth.
  16. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
    [CrossRef] [PubMed]
  17. V. Magni, “Multielement stable resonators containing a variable lens,” J. Opt. Soc. Am. A 4, 1962–1969 (1987).
    [CrossRef]
  18. Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, and T. Tajime, “208-W TEM00 operation of a diode-dumped Nd:YAG rod laser,” Opt. Lett. 24, 679–681 (1999).
    [CrossRef]

1999

1996

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996), and references therein.
[CrossRef]

1995

1992

1991

C. A. Wang and H. K. Choi, “Organometallic vapor phase epitaxy of high performance strained-layer InGaAs-AlGaAs diode lasers,” IEEE J. Quantum Electron. 27, 681–686 (1991).
[CrossRef]

1987

1986

1985

R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, 322–324 (1985).
[CrossRef]

1977

R. D. Dupuis and P. D. Dapkus, “Room-temperature operation of Ga(1−x)AlxAs/GaAs double-heterostructure lasers grown by metalorganic chemical vapor phase deposition,” Appl. Phys. Lett. 31, 466–468 (1977).
[CrossRef]

1976

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers. III. Preparation of almost perfect multilayers,” J. Cryst. Growth 32, 265–273 (1976).
[CrossRef]

Alexander, J.

Asom, M. T.

Aus der Au, J.

J. Aus der Au, S. F. Schaer, R. Paschotta, C. Honninger, and U. Keller, “High-power diode-pumped passively mode-locked Yb:YAG lasers,” Opt. Lett. 24, 1281–1283 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
[CrossRef]

Bean, J. C.

R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, 322–324 (1985).
[CrossRef]

Blakeslee, A. E.

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers. III. Preparation of almost perfect multilayers,” J. Cryst. Growth 32, 265–273 (1976).
[CrossRef]

Boyd, G. D.

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
[CrossRef]

Choi, H. K.

C. A. Wang and H. K. Choi, “Organometallic vapor phase epitaxy of high performance strained-layer InGaAs-AlGaAs diode lasers,” IEEE J. Quantum Electron. 27, 681–686 (1991).
[CrossRef]

Chui, T. H.

Cundiff, S. T.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996), and references therein.
[CrossRef]

Cunningham, J. E.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996), and references therein.
[CrossRef]

Dapkus, P. D.

R. D. Dupuis and P. D. Dapkus, “Room-temperature operation of Ga(1−x)AlxAs/GaAs double-heterostructure lasers grown by metalorganic chemical vapor phase deposition,” Appl. Phys. Lett. 31, 466–468 (1977).
[CrossRef]

Dupuis, R. D.

R. D. Dupuis and P. D. Dapkus, “Room-temperature operation of Ga(1−x)AlxAs/GaAs double-heterostructure lasers grown by metalorganic chemical vapor phase deposition,” Appl. Phys. Lett. 31, 466–468 (1977).
[CrossRef]

Dymott, M. J. P.

Ellmers, C.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruhle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Ferguson, J. F.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
[CrossRef]

Hilpert, M.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruhle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Hirano, Y.

Hofmann, M. R.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruhle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Honninger, C.

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
[CrossRef]

Jan, W. Y.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996), and references therein.
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
[CrossRef]

Kafka, J. D.

Karaiskaj, D.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruhle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
[CrossRef]

Kasahara, K.

Keller, U.

Kmetec, J. D.

Knox, W. H.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996), and references therein.
[CrossRef]

Kopf, D.

G. J. Spuhler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24, 528–530 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
[CrossRef]

Koyata, Y.

Leu, S.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruhle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Magni, V.

Matthews, J. W.

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers. III. Preparation of almost perfect multilayers,” J. Cryst. Growth 32, 265–273 (1976).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
[CrossRef]

Meyer, J.

Miller, D. A. B.

Moser, M.

Paschotta, R.

People, R.

R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, 322–324 (1985).
[CrossRef]

Pieterse, J. W.

Ruhle, W. W.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruhle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Schaer, S. F.

Spuhler, G. J.

Stolz, W.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruhle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Tajime, T.

Truong, G.

Tsuda, S.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996), and references therein.
[CrossRef]

Wang, C. A.

C. A. Wang and H. K. Choi, “Organometallic vapor phase epitaxy of high performance strained-layer InGaAs-AlGaAs diode lasers,” IEEE J. Quantum Electron. 27, 681–686 (1991).
[CrossRef]

Watts, M. L.

Weingarten, K. J.

G. J. Spuhler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24, 528–530 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
[CrossRef]

Yamamoto, S.

Appl. Opt.

Appl. Phys. Lett.

R. D. Dupuis and P. D. Dapkus, “Room-temperature operation of Ga(1−x)AlxAs/GaAs double-heterostructure lasers grown by metalorganic chemical vapor phase deposition,” Appl. Phys. Lett. 31, 466–468 (1977).
[CrossRef]

R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, 322–324 (1985).
[CrossRef]

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruhle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

IEEE J. Quantum Electron.

C. A. Wang and H. K. Choi, “Organometallic vapor phase epitaxy of high performance strained-layer InGaAs-AlGaAs diode lasers,” IEEE J. Quantum Electron. 27, 681–686 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996), and references therein.
[CrossRef]

J. Cryst. Growth

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers. III. Preparation of almost perfect multilayers,” J. Cryst. Growth 32, 265–273 (1976).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

Other

B. Ruffing, A. Nebel, and R. Wallenstein, “A 20-W KTA-OPO synchronously pumped by a cw mode-locked Nd:YVO4 oscillator-amplifier system,” in Lasers and Electro-Optics, Vol. II of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CWB2.

C. J. Howle, A. I. Ferguson, S. T. Lee, D. Burns, and M. D. Dawson, “A high power SBR mode-locked Nd:YLF laser,” in European Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CtuE3; T. Graf, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Multi-watt Nd:YVO4 laser, mode mocked by a saturable Bragg reflector and side pumped by a diode laser bar,” Opt. Commun. 159, 84–87 (1999).
[CrossRef]

±2% for nonrotated MOCVD growth.

L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995); C. Hönninger, R. Pascotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Reflectivity map for typical SBR wafer. Dotted circle indicates the position of the 2-in. wafer. The values shown relate to the center of the reflectivity passband. The bandwidth of the reflectivity passband was ∼80–100 nm.

Fig. 2
Fig. 2

Basic SBR mode-locked Nd:YVO4 laser configuration.

Fig. 3
Fig. 3

Temperature-tuning characteristics of a typical single InGaAs QW SBR mode-locked laser. The cavity frequency was 445 MHz.

Fig. 4
Fig. 4

Q-switched mode-locked waveforms recorded at (a) 2.1-W, (b) 2.2-W, and (c) 2.3-W average output power. The transition to stable mode locking was 2.35 W.

Fig. 5
Fig. 5

(a) Schematic of the topmost layers of the strain-balanced InGaAs DQW SBR. (b) Strain compensation with GaAsP layers. The solid curve indicates the relative concentration of indium and phosphorus required to give zero net strain. The star denotes the composition of the strain-compensated SBR devices used in this study.

Fig. 6
Fig. 6

(a) Short four (24-W) pump Nd:YVO4 laser cavity. Each pump laser incorporates a fast-axis collimating microlens, and the output is coupled to the Nd:YVO4 slab with a f=40 mm spherical lens. (b) Power transfer characteristic of the short Nd:YVO4 laser. The output was single transverse mode for all pump currents. Note that the laser was optimized with the maximum drive current applied to the pump lasers; the measurements shown here were then recorded with no cavity realignment. The kink at ∼23–24 A occurred because the temperature of the pump lasers was optimized at 30-A injection current and not a modal instability.

Fig. 7
Fig. 7

90-MHz SBR mode-locked Nd:YVO4 cavity configuration. Note that the relay optics images the position of the optimized short-cavity plane mirror onto the SBR with a magnification equal to f2/f1.

Fig. 8
Fig. 8

Intensity autocorrelation of the output pulses from the 90-MHz Nd:YVO4 laser. The pulse duration was measured as 20.9 ps by assuming a sech2 pulse shape.

Fig. 9
Fig. 9

Beam-quality measurements of the 90-MHz SBR mode-locked Nd:YVO4 laser.

Fig. 10
Fig. 10

(a) Intensity autocorrelation trace, and (b) power transfer characteristics obtained from 36-MHz laser. The inset shows the 36-MHz pulse train emitted from the laser.

Fig. 11
Fig. 11

Onset of SBR mode locking in the long 36-MHz Nd:YVO4 laser cavity. The intermittent mode-locking and cw oscillation indicate that (a) is close to the threshold conditions for SBR mode locking. In (b) the laser produces only a mode-locked output. Note that because of aliasing on the digital oscilloscope, the figures do not show individual pulses; however, the mode-locked and cw states are clearly defined.

Fig. 12
Fig. 12

Intensity autocorrelation of the output pulses from the 36-MHz multibounce SBR mode-locked Nd:YVO4 laser.

Metrics