Abstract

Nonlinear pulse propagation in a fiber Bragg grating is investigated numerically by solving coupled-mode equations including the generation of stimulated Brillouin scattering (SBS) in a time region shorter than the phonon lifetime. It is found that the Brillouin threshold is substantially reduced compared with that in an optical fiber with no gratings. Nonlinear pulse propagation is investigated for two device operations whose driving point (i.e., frequency) lies outside the stop band and at the center of the stop band (zero detuning). In general, the generation of a single pulse or a pulse train that is due to modulational instability is spoiled by the pump depletion owing to SBS for incident pulses longer than 1 ns. In the interaction between SBS and nonlinear grating dynamics, there is a distinct difference between two device operations. This reflects the difference in the fields within the grating. Especially the pulse generation from an instability of gap solitons excited at the stop-band frequency is affected by SBS even if the pulse width is less than 1 ns.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 1995).
  2. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
    [CrossRef]
  3. H. G. Winful and G. D. Cooperman, “Self-pulsing and chaos in distributed feedback bistable optical devices,” Appl. Phys. Lett. 40, 298–300 (1982).
    [CrossRef]
  4. H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).
    [CrossRef]
  5. C. M. de Sterke, “Simulations of gap-soliton generation,” Phys. Rev. A 45, 2012–2018 (1992).
    [CrossRef] [PubMed]
  6. C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
    [CrossRef] [PubMed]
  7. H. G. Winful, R. Zamir, and S. Feldman, “Modulational instability in nonlinear periodic structures: implications for gap solitons,” Appl. Phys. Lett. 58, 1001–1003 (1991).
    [CrossRef]
  8. U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, M. Kuwata-Gonokami, P. J. Lemaire, J. E. Sipe, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995).
    [CrossRef] [PubMed]
  9. B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett. 32, 2341–2342 (1996).
    [CrossRef]
  10. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
    [CrossRef]
  11. B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
    [CrossRef]
  12. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” Opt. Commun. 4, 10–19 (1983).
  13. H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys., Part 1 38, 6309–6315 (1999).
    [CrossRef]
  14. H. J. Eichler, J. Kunde, and B. Liu, “Quartz fiber phase conjugators with high fidelity and reflectivity,” Opt. Commun. 139, 327–334 (1997).
    [CrossRef]
  15. A. Heuer and R. Menzel, “Phase-conjugating stimulated Brillouin scattering mirror for low powers and reflectivities above 90% in an internally tapered optical fiber,” Opt. Lett. 23, 834–836 (1998).
    [CrossRef]
  16. X. Bao, A. Brown, M. DeMerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24, 510–512 (1999).
    [CrossRef]
  17. M. J. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
    [CrossRef]
  18. R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
    [CrossRef]
  19. C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
    [CrossRef]
  20. S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
    [CrossRef]
  21. A. Höök and A. Bolle, “Transient dynamics of stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 10, 493–502 (1992).
    [CrossRef]
  22. W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
    [CrossRef] [PubMed]
  23. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
    [CrossRef] [PubMed]
  24. E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
    [CrossRef]

1999 (2)

H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys., Part 1 38, 6309–6315 (1999).
[CrossRef]

X. Bao, A. Brown, M. DeMerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24, 510–512 (1999).
[CrossRef]

1998 (2)

A. Heuer and R. Menzel, “Phase-conjugating stimulated Brillouin scattering mirror for low powers and reflectivities above 90% in an internally tapered optical fiber,” Opt. Lett. 23, 834–836 (1998).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[CrossRef]

1997 (3)

H. J. Eichler, J. Kunde, and B. Liu, “Quartz fiber phase conjugators with high fidelity and reflectivity,” Opt. Commun. 139, 327–334 (1997).
[CrossRef]

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
[CrossRef]

1996 (1)

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett. 32, 2341–2342 (1996).
[CrossRef]

1995 (1)

1994 (1)

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

1992 (3)

A. Höök and A. Bolle, “Transient dynamics of stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 10, 493–502 (1992).
[CrossRef]

W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
[CrossRef] [PubMed]

C. M. de Sterke, “Simulations of gap-soliton generation,” Phys. Rev. A 45, 2012–2018 (1992).
[CrossRef] [PubMed]

1991 (2)

H. G. Winful, R. Zamir, and S. Feldman, “Modulational instability in nonlinear periodic structures: implications for gap solitons,” Appl. Phys. Lett. 58, 1001–1003 (1991).
[CrossRef]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

1990 (1)

C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
[CrossRef] [PubMed]

1987 (1)

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

1985 (2)

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).
[CrossRef]

1983 (2)

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” Opt. Commun. 4, 10–19 (1983).

M. J. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[CrossRef]

1982 (1)

H. G. Winful and G. D. Cooperman, “Self-pulsing and chaos in distributed feedback bistable optical devices,” Appl. Phys. Lett. 40, 298–300 (1982).
[CrossRef]

1979 (1)

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[CrossRef]

Aceves, A. B.

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[CrossRef]

Bao, X.

Bolle, A.

A. Höök and A. Bolle, “Transient dynamics of stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 10, 493–502 (1992).
[CrossRef]

Boyd, R. W.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

Broderick, N. G. R.

Brown, A.

Cooperman, G. D.

H. G. Winful and G. D. Cooperman, “Self-pulsing and chaos in distributed feedback bistable optical devices,” Appl. Phys. Lett. 40, 298–300 (1982).
[CrossRef]

Cotter, D.

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” Opt. Commun. 4, 10–19 (1983).

Damzen, M. J.

M. J. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[CrossRef]

Dane, C. B.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

de Sterke, C. M.

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett. 32, 2341–2342 (1996).
[CrossRef]

U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, M. Kuwata-Gonokami, P. J. Lemaire, J. E. Sipe, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995).
[CrossRef] [PubMed]

C. M. de Sterke, “Simulations of gap-soliton generation,” Phys. Rev. A 45, 2012–2018 (1992).
[CrossRef] [PubMed]

C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
[CrossRef] [PubMed]

DeMerchant, M.

Eggleton, B. J.

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett. 32, 2341–2342 (1996).
[CrossRef]

Eichler, H. J.

H. J. Eichler, J. Kunde, and B. Liu, “Quartz fiber phase conjugators with high fidelity and reflectivity,” Opt. Commun. 139, 327–334 (1997).
[CrossRef]

Erdogan, T.

Fedosejevs, R.

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

Feldman, S.

H. G. Winful, R. Zamir, and S. Feldman, “Modulational instability in nonlinear periodic structures: implications for gap solitons,” Appl. Phys. Lett. 58, 1001–1003 (1991).
[CrossRef]

Friesem, A. A.

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

Gaeta, A. L.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

Garmire, E.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[CrossRef]

Hackel, L. A.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

Harrison, R. G.

W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
[CrossRef] [PubMed]

Heuer, A.

Hogervorst, W.

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[CrossRef]

Höök, A.

A. Höök and A. Bolle, “Transient dynamics of stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 10, 493–502 (1992).
[CrossRef]

Hutchinson, H.

M. J. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[CrossRef]

Johnstone, A.

W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
[CrossRef] [PubMed]

Kunde, J.

H. J. Eichler, J. Kunde, and B. Liu, “Quartz fiber phase conjugators with high fidelity and reflectivity,” Opt. Commun. 139, 327–334 (1997).
[CrossRef]

Kuwata-Gonokami, M.

Lemaire, P. J.

Li, H.

H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys., Part 1 38, 6309–6315 (1999).
[CrossRef]

Lichtman, E.

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

Liu, B.

H. J. Eichler, J. Kunde, and B. Liu, “Quartz fiber phase conjugators with high fidelity and reflectivity,” Opt. Commun. 139, 327–334 (1997).
[CrossRef]

Lu, W.

W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
[CrossRef] [PubMed]

Marburger, J. H.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[CrossRef]

Menzel, R.

Mizrahi, V.

Mohideen, U.

Neuman, W. A.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

Offenberger, A. A.

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

Ogusu, K.

H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys., Part 1 38, 6309–6315 (1999).
[CrossRef]

Schiemann, S.

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[CrossRef]

Sipe, J. E.

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett. 32, 2341–2342 (1996).
[CrossRef]

U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, M. Kuwata-Gonokami, P. J. Lemaire, J. E. Sipe, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995).
[CrossRef] [PubMed]

C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
[CrossRef] [PubMed]

Slusher, R. E.

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett. 32, 2341–2342 (1996).
[CrossRef]

U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, M. Kuwata-Gonokami, P. J. Lemaire, J. E. Sipe, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995).
[CrossRef] [PubMed]

Smith, J.

Strasser, T. A.

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[CrossRef]

Ubachs, W.

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[CrossRef]

Winful, H. G.

H. G. Winful, R. Zamir, and S. Feldman, “Modulational instability in nonlinear periodic structures: implications for gap solitons,” Appl. Phys. Lett. 58, 1001–1003 (1991).
[CrossRef]

H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).
[CrossRef]

H. G. Winful and G. D. Cooperman, “Self-pulsing and chaos in distributed feedback bistable optical devices,” Appl. Phys. Lett. 40, 298–300 (1982).
[CrossRef]

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[CrossRef]

Zamir, R.

H. G. Winful, R. Zamir, and S. Feldman, “Modulational instability in nonlinear periodic structures: implications for gap solitons,” Appl. Phys. Lett. 58, 1001–1003 (1991).
[CrossRef]

Appl. Phys. Lett. (4)

H. G. Winful, R. Zamir, and S. Feldman, “Modulational instability in nonlinear periodic structures: implications for gap solitons,” Appl. Phys. Lett. 58, 1001–1003 (1991).
[CrossRef]

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[CrossRef]

H. G. Winful and G. D. Cooperman, “Self-pulsing and chaos in distributed feedback bistable optical devices,” Appl. Phys. Lett. 40, 298–300 (1982).
[CrossRef]

H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).
[CrossRef]

Electron. Lett. (1)

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett. 32, 2341–2342 (1996).
[CrossRef]

IEEE J. Quantum Electron. (4)

M. J. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[CrossRef]

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[CrossRef]

J. Lightwave Technol. (1)

A. Höök and A. Bolle, “Transient dynamics of stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 10, 493–502 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys., Part 1 (1)

H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys., Part 1 38, 6309–6315 (1999).
[CrossRef]

Opt. Commun. (4)

H. J. Eichler, J. Kunde, and B. Liu, “Quartz fiber phase conjugators with high fidelity and reflectivity,” Opt. Commun. 139, 327–334 (1997).
[CrossRef]

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[CrossRef]

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” Opt. Commun. 4, 10–19 (1983).

Opt. Lett. (3)

Phys. Rev. A (4)

C. M. de Sterke, “Simulations of gap-soliton generation,” Phys. Rev. A 45, 2012–2018 (1992).
[CrossRef] [PubMed]

C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
[CrossRef] [PubMed]

W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
[CrossRef] [PubMed]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Temporal variation of the transmitted and Stokes powers in an optical fiber with no gratings for different incident pulse widths τP at an incident peak power of 40 kW.

Fig. 2
Fig. 2

Temporal variation of the transmitted pulse through a fiber Bragg grating with ΔβL=4.55,κL=3.5, and L=3.5 cm at an incident peak power of 40 kW for different incident pulse widths: (a) τP=0.2 ns, (b) τP=1 ns, (c) τP=2 ns, and (d) τP=3 ns. The transmitted power is calculated for two cases without SBS (short-dashed curve) and with SBS (solid curve).

Fig. 3
Fig. 3

Temporal variation of the transmitted pulse through a fiber Bragg grating with ΔβL=4.55,κL=3.5, and L=3.5 cm for the incident pulse width τP=1 ns and two values of the incident peak power: (a) PP=10 kW and (b) PP=20 kW.

Fig. 4
Fig. 4

Temporal variation of the transmitted pulse through a fiber Bragg grating with ΔβL=0,κL=3.5, and L=3.5 cm for the incident pulse width τP=1 ns and four values of the incident peak power: (a) PP=20 kW, (b) PP=25 kW, (c) PP=35 kW, and (d) PP=40 kW.

Fig. 5
Fig. 5

Stationary input–output characteristics of a fiber Bragg grating with ΔβL=0,κL=3.5, and L=3.5 cm.

Fig. 6
Fig. 6

Temporal variation of the transmitted pulse through a fiber Bragg grating with ΔβL=0,κL=3.5, and L=3.5 cm for the incident pulse width τP=2 ns and two values of the incident peak powers: (a) PP=25 kW and (b) PP=40 kW.

Fig. 7
Fig. 7

Temporal variation of the transmitted pulse through a fiber Bragg grating with ΔβL=0,κL=3.5, and L=3.5 cm at an incident peak power of 30 kW for different incident pulse widths: (a) τP=0.3 ns, (b) τP=0.5 ns, (c) τP=0.7 ns, and (d) τP=0.9 ns.

Fig. 8
Fig. 8

Temporal variation of the transmitted pulse through a fiber Bragg grating with ΔβL=0,κL=3.5, and L=1 cm for the incident pulse width τP=0.2 ns and two values of the incident peak power: (a) PP=90 kW and (b) PP=100 kW.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

nL(z)=n0+n1 cos(2β0z),
P=0(nL2-n02)E+0n0n2|E|2E+0n02ρΔρE,
E(z, t)=12{EF(z, t)exp[j(βz-ωt)]+EB(z, t)exp[-j(βz+ωt)]}+c.c.,
Δρ(z, t)=12A(z, t)exp[j(βAz-ωAt)]+c.c.,
EFz+1vEFt=-gBeEBQ+jκEB exp(-j2Δβz)+jγ(|EF|2+2|EB|2)EF,
EBz-1vEBt=-gBeEFQ*-jκEF exp(j2Δβz)-jγ(2|EF|2+|EB|2)EB,
τAQt+Q=EFEB*+Q0,
gBe=τAg1g2=n04η0gB,
g1=πn03p122λρ0,
g2=πn05p120λvA,
g˜B=ΔνAΔνA+ΔνPgB,

Metrics