Abstract

We have investigated the influence of the temperature on the photoinduced birefringence as well as on the diffraction efficiency of azo dye doped or grafted polymers. The samples are composed of three polymer matrices containing 2, 5-dimethyl-4-(p-nitrophenylazo anisole). We propose two theoretical models to explain the experimental increase of both phenomena when the temperature is decreased. Models are based on the statistical angular distribution of the chromophores that depends on the intensity of the polarized laser beam in the media, counteracted by the thermal agitation. Parameters introduced in both models can be used to characterize the polymeric system properties.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
    [CrossRef] [PubMed]
  2. J. Xu, G. Zhang, Q. Wu, Y. Liang, S. Liu, X. Chen, and Y. Shen, “Holographic recording and light amplification in doped polymer film,” Opt. Lett. 20, 504–506 (1995).
    [CrossRef] [PubMed]
  3. S. V. O’Leary, “Real-time processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).
    [CrossRef]
  4. L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
    [CrossRef]
  5. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).
    [CrossRef]
  6. P. M. Lundquist, C. Poga, R. G. De Voe, Y. Jia, W. E. Moerner, M.-P. Bernal, H. Coufal, and R. K. Grygier, “Holographic digital data storage in a photorefractive polymer,” Opt. Lett. 21, 890–892 (1996).
    [CrossRef] [PubMed]
  7. M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
    [CrossRef]
  8. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  9. T. Buffeteau and M. Pézolet, “In situ study of photoinduced orientation in azopolymers by time-dependent polarization modulation infrared spectroscopy,” Appl. Opt. 50, 948–955 (1996).
  10. A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).
  11. L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
    [CrossRef]
  12. P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
    [CrossRef]
  13. P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).
    [CrossRef]
  14. M. Dumont, “A common model for optical ordering of photoisomerizable molecules,” in Photorefractive Organic Materials. Science and Applications, F. Kajzar, V. M. Agranovich, and C. Y.-C. Lee, eds. (Kluwer Academic, Amsterdam, 1996), Vol. 9, pp. 501–511.
  15. L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Polarization-preserving wavefront reversal by four-wave mixing in photoanisotropic materials,” Appl. Opt. 27, 1598–1602 (1988).
    [CrossRef] [PubMed]
  16. J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).
  17. S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).
  18. O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).
    [CrossRef]
  19. B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
    [CrossRef]
  20. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
    [CrossRef]
  21. C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).
    [CrossRef]
  22. P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).
    [CrossRef]
  23. L. Lamarre and C. S. P. Sung, “Studies of physical aging and molecular motion by azochromophorric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729–1736 (1983).
    [CrossRef]
  24. Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).
  25. M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).
  26. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 121–154.
  27. Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).
    [CrossRef]
  28. T. G. Pedersen, P. M. Johansen, N. C. R. Holme, P. Ramanujam, and S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid-crystalline azobenzene side-chain polyesters,” J. Opt. Soc. Am. B 15, 1120–1129 (1998).
    [CrossRef]
  29. I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).
    [CrossRef]
  30. S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).
    [CrossRef]
  31. Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373–381 (1993).
    [CrossRef]
  32. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967), pp. 169–174.
  33. M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).
    [CrossRef]
  34. C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489–2506 (1978).
    [CrossRef]
  35. D. Kermisch, “Nonuniform sinusoidally modulated dielectric gratings,” J. Opt. Soc. Am. 59, 1409–1414 (1969).
    [CrossRef]
  36. L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
    [CrossRef]
  37. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  38. R. N. Haward, The Physics of Glassy Polymers (Wiley, New York, 1973), pp. 25–41 and 171–176.
  39. C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).
    [CrossRef]
  40. P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarization holography reveals the nature of the grating in azo-dye contained polymers,” J. Opt. Soc. Am. B (to be published).
  41. P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).
    [CrossRef]
  42. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
    [CrossRef] [PubMed]
  43. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymer,” J. Opt. Soc. Am. B 11, 320–330 (1994).
    [CrossRef]
  44. W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).
    [CrossRef]

2000 (1)

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).
[CrossRef]

1999 (3)

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).
[CrossRef]

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).
[CrossRef]

P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).
[CrossRef]

1998 (1)

1997 (2)

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).
[CrossRef]

O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).
[CrossRef]

1996 (5)

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).
[CrossRef]

P. M. Lundquist, C. Poga, R. G. De Voe, Y. Jia, W. E. Moerner, M.-P. Bernal, H. Coufal, and R. K. Grygier, “Holographic digital data storage in a photorefractive polymer,” Opt. Lett. 21, 890–892 (1996).
[CrossRef] [PubMed]

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
[CrossRef] [PubMed]

T. Buffeteau and M. Pézolet, “In situ study of photoinduced orientation in azopolymers by time-dependent polarization modulation infrared spectroscopy,” Appl. Opt. 50, 948–955 (1996).

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).
[CrossRef]

1995 (6)

J. Xu, G. Zhang, Q. Wu, Y. Liang, S. Liu, X. Chen, and Y. Shen, “Holographic recording and light amplification in doped polymer film,” Opt. Lett. 20, 504–506 (1995).
[CrossRef] [PubMed]

M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
[CrossRef]

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
[CrossRef]

Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).
[CrossRef]

1994 (4)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).

S. V. O’Leary, “Real-time processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymer,” J. Opt. Soc. Am. B 11, 320–330 (1994).
[CrossRef]

1993 (3)

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).
[CrossRef]

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373–381 (1993).
[CrossRef]

1992 (1)

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

1991 (2)

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

1989 (1)

I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).
[CrossRef]

1988 (2)

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Polarization-preserving wavefront reversal by four-wave mixing in photoanisotropic materials,” Appl. Opt. 27, 1598–1602 (1988).
[CrossRef] [PubMed]

1987 (1)

L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
[CrossRef]

1984 (1)

1983 (1)

L. Lamarre and C. S. P. Sung, “Studies of physical aging and molecular motion by azochromophorric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729–1736 (1983).
[CrossRef]

1978 (1)

C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489–2506 (1978).
[CrossRef]

1971 (1)

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).

1969 (2)

D. Kermisch, “Nonuniform sinusoidally modulated dielectric gratings,” J. Opt. Soc. Am. 59, 1409–1414 (1969).
[CrossRef]

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

1955 (1)

M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).
[CrossRef]

Atassi, Y.

Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).

Au, L. B.

L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
[CrossRef]

Bernal, M.-P.

Bjorklund, G. C.

Blanche, P. A.

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).
[CrossRef]

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).
[CrossRef]

Blanche, P.-A.

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).
[CrossRef]

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).
[CrossRef]

P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).
[CrossRef]

Buffeteau, T.

T. Buffeteau and M. Pézolet, “In situ study of photoinduced orientation in azopolymers by time-dependent polarization modulation infrared spectroscopy,” Appl. Opt. 50, 948–955 (1996).

Burland, D. M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
[CrossRef] [PubMed]

Chen, X.

Coufal, H.

Dalton, L. R.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
[CrossRef]

De Voe, R. G.

Delaire, J. A.

Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).

Dragostinova, V.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Polarization-preserving wavefront reversal by four-wave mixing in photoanisotropic materials,” Appl. Opt. 27, 1598–1602 (1988).
[CrossRef] [PubMed]

Dubois, P.

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).
[CrossRef]

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).
[CrossRef]

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).
[CrossRef]

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).
[CrossRef]

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Dumont, M.

P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).
[CrossRef]

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373–381 (1993).
[CrossRef]

Eisenbach, C. D.

C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489–2506 (1978).
[CrossRef]

Ferry, J. D.

M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).
[CrossRef]

Fischer, M.

Froc, G.

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).

Geletneky, C.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
[CrossRef] [PubMed]

Ghosn, R.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
[CrossRef]

Gosselin, J.

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

Grunnet-Jepsen, A.

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).
[CrossRef]

Grygier, R. K.

Hache, F.

Hall Jr., H. K.

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

Harper, A. W.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
[CrossRef]

Hirao, K.

I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).
[CrossRef]

Ho, M. S.

M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
[CrossRef]

Holme, N. C. R.

Horie, K.

I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).
[CrossRef]

Hosotte, S.

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).

Hubble, A.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
[CrossRef]

Hvilsted, S.

Hwang, J. S.

J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).

Ivanov, S.

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

Javidi, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).
[CrossRef]

Jéro?me, R.

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).
[CrossRef]

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).
[CrossRef]

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).
[CrossRef]

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).
[CrossRef]

Jia, Y.

Johansen, P. M.

Jurich, M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
[CrossRef] [PubMed]

Kermisch, D.

Kippelen, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

Knoll, W.

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kostromin, S.

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

Lamarre, L.

L. Lamarre and C. S. P. Sung, “Studies of physical aging and molecular motion by azochromophorric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729–1736 (1983).
[CrossRef]

Landel, R. F.

M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).
[CrossRef]

Laquindanum, J.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
[CrossRef]

Lee, G. J.

J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).

Lee, V. Y.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
[CrossRef] [PubMed]

Lemaire, P. C.

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).
[CrossRef]

P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).
[CrossRef]

Lemaire, Ph. C.

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).
[CrossRef]

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).
[CrossRef]

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).
[CrossRef]

Liang, Y.

Liang, Z.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
[CrossRef]

Lim, T. K.

J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).

Liu, S.

Lundquist, P. M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
[CrossRef] [PubMed]

P. M. Lundquist, C. Poga, R. G. De Voe, Y. Jia, W. E. Moerner, M.-P. Bernal, H. Coufal, and R. K. Grygier, “Holographic digital data storage in a photorefractive polymer,” Opt. Lett. 21, 890–892 (1996).
[CrossRef] [PubMed]

Lyon, S. R.

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

Maertens, C.

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).
[CrossRef]

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).
[CrossRef]

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).
[CrossRef]

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).
[CrossRef]

Makushenko, A. M.

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).

Markovsky, P.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

Mateva, N.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

Meerholz, K.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Mita, I.

I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).
[CrossRef]

Moerner, W. E.

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).
[CrossRef]

P. M. Lundquist, C. Poga, R. G. De Voe, Y. Jia, W. E. Moerner, M.-P. Bernal, H. Coufal, and R. K. Grygier, “Holographic digital data storage in a photorefractive polymer,” Opt. Lett. 21, 890–892 (1996).
[CrossRef] [PubMed]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymer,” J. Opt. Soc. Am. B 11, 320–330 (1994).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Moylan, C. R.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
[CrossRef] [PubMed]

Nakatani, K.

Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).

Natansohn, A.

M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
[CrossRef]

S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

Neporent, B. S.

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).

Newell, J. C. W.

L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
[CrossRef]

Nikolova, L.

O’Leary, S. V.

S. V. O’Leary, “Real-time processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).
[CrossRef]

Padias, A. B.

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

Pauley, M. A.

O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).
[CrossRef]

Pedersen, T. G.

Peyghambarian, N.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

Pézolet, M.

T. Buffeteau and M. Pézolet, “In situ study of photoinduced orientation in azopolymers by time-dependent polarization modulation infrared spectroscopy,” Appl. Opt. 50, 948–955 (1996).

Poga, C.

Ramanujam, P.

Rochon, P.

M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
[CrossRef]

S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

Sandalphon,

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Scott, J. C.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Sekkat, Z.

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).
[CrossRef]

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373–381 (1993).
[CrossRef]

Shen, Y.

Shibaev, V.

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

Silence, S. M.

Solymar, L.

L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
[CrossRef]

Song, O.-K.

O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).
[CrossRef]

Stolbova, O. V.

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).

Sung, C. S. P.

L. Lamarre and C. S. P. Sung, “Studies of physical aging and molecular motion by azochromophorric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729–1736 (1983).
[CrossRef]

Thompson, C. L.

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).
[CrossRef]

Todorov, T.

Tomova, N.

Twieg, R. J.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
[CrossRef] [PubMed]

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Volodin, B. L.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Wang, C. H.

O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).
[CrossRef]

Williams, M. L.

M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).
[CrossRef]

Wood, J.

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).
[CrossRef]

Wortmann, R.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
[CrossRef] [PubMed]

Wu, B.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
[CrossRef]

Wu, Q.

Xie, S.

S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

Xu, C.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
[CrossRef]

Xu, J.

Yakovlev, I.

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

Zhang, G.

Adv. Mater. (1)

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Chem. Mater. (1)

S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).
[CrossRef]

Electron. Lett. (1)

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

J. Am. Chem. Soc. (1)

M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).
[CrossRef]

J. Appl. Chem. (1)

Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).

J. Korean Phys. Soc. (1)

J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).

J. Mod. Opt. (2)

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).
[CrossRef]

J. Polym. Sci., Part B: Polym. Phys. (1)

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).
[CrossRef]

Macromolecules (4)

L. Lamarre and C. S. P. Sung, “Studies of physical aging and molecular motion by azochromophorric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729–1736 (1983).
[CrossRef]

I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).
[CrossRef]

O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).
[CrossRef]

M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
[CrossRef]

Makromol. Chem. (2)

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489–2506 (1978).
[CrossRef]

Nature (London) (2)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).
[CrossRef]

Nonlinear Opt. (1)

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).

Opt. Commun. (2)

S. V. O’Leary, “Real-time processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).
[CrossRef]

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).
[CrossRef]

Opt. Lett. (3)

Opt. Spectrosc. (USSR) (1)

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).

Phys. Rev. Lett. (1)

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Polym. Eng. Sci. (1)

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).
[CrossRef]

Polym. Int. (1)

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).
[CrossRef]

Proc. SPIE (1)

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).
[CrossRef]

Science (1)

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
[CrossRef] [PubMed]

Synth. Met. (1)

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373–381 (1993).
[CrossRef]

Other (5)

N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967), pp. 169–174.

R. N. Haward, The Physics of Glassy Polymers (Wiley, New York, 1973), pp. 25–41 and 171–176.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 121–154.

M. Dumont, “A common model for optical ordering of photoisomerizable molecules,” in Photorefractive Organic Materials. Science and Applications, F. Kajzar, V. M. Agranovich, and C. Y.-C. Lee, eds. (Kluwer Academic, Amsterdam, 1996), Vol. 9, pp. 501–511.

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarization holography reveals the nature of the grating in azo-dye contained polymers,” J. Opt. Soc. Am. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Chemical structures of the different compounds used, along with their acronyms. The chromophore DMNPAA is always add in 15 wt.% to the polymer matrix.

Fig. 2
Fig. 2

Absorption coefficient spectrum of a 15-wt.% DMNPAA doped PVK polymer film. The absorption coefficients of both working wavelengths are indicated by arrows.

Fig. 3
Fig. 3

Photoinduced birefringence setup. L, lens; O, shutter; λ/2, half-wave plate; B.S., beam splitter; P, polarizer; A, analyzer.

Fig. 4
Fig. 4

Saturation amplitude of the transmission efficiency versus temperature of the sample for the three polymers studied. Curves are interpolations by the theoretical model.

Fig. 5
Fig. 5

Sensitivity of the photoinduced birefringence versus sample temperature for the three polymers studied.

Fig. 6
Fig. 6

Geometry of the coordinate system axes used in the theoretical models: (a) coordinates associated with a birefringent element and (b) coordinates associated with the laboratory. See the text for the definitions of axes and vectors.

Fig. 7
Fig. 7

Holographic setup. O, shutter; P, polarizer; B.S., beam splitter; F.S., spatial filtering; L, lens; A, attenuator.

Fig. 8
Fig. 8

Saturation amplitude of the diffraction efficiency versus temperature of the sample for the three polymers studied. Curves are interpolations by the theoretical model.

Fig. 9
Fig. 9

Sensitivity of the diffraction efficiency versus sample temperature for the three polymers studied.

Fig. 10
Fig. 10

Geometry and description of the parameters used in the Mk matrix.

Fig. 11
Fig. 11

Variation of the indices of refraction with the difference between temperature and temperature threshold. Circles: refractive index along the z laboratory axis in sample lighted zones, squares: refractive index along the y laboratory axis in sample lighted zones, diamonds: refractive index along the z and y laboratory axes in sample dark zones. The plot is based on Eq. (33).

Fig. 12
Fig. 12

Thermal dependence of both time constants of the transmission efficiency: (a) fast time constant and (b) slow time constant. The lines are data interpolations; they are guides for the eye and do not come from any model.

Tables (1)

Tables Icon

Table 1 Parameters Obtained from the Photoinduced Birefringence Fitting

Equations (53)

Equations on this page are rendered with MathJax. Learn more.

η(t)=sin2(A[1-exp(-t/τA)]+B[1-exp(-t/τB)]+ϕ).
ηmax=sin2(A+B).
S=AτA+BτBEAr[1-exp(-αArd)].
ExEy=exp-αHeNed2[R(-φ)×W0+R(φ)]×ExEy,
R(φ)=cos φsin φ-sin φcos φ,
W0=exp-iΓ200expiΓ2.
Γ=2πλd[no-ne(θ)],
1ne2(θ)=cos2 θno2+sin2 θne2,
ExEy=exp-NαHeNed2[R(-φN)×W0N×R(φN)]×[R(-φN-1)×W0N-1×R(φN-1)]××[R(-φ1)×W01×R(φ1)]×ExEy.
nb(θ1, φ1)dθ1dφ1
=N exp-E(θ1, φ1, T)kTz(θ1, φ1)ω(θ1, φ1)dθ1dφ1,
02πnb(θ1, φ1)dθ1dφ1=N,
02πE(θ1, φ1)nb(θ1, φ1)dθ1dφ1=E,
z(θ1)=0π exp-E(θ1, φ1, T)kTsin θ12dθ1.
E(θ1, T)=A(T) cos2 θ1,
A(T)=ATT-T0,
=0 exp-αArL2.
nb(θ1)dθ1dφ1=N exp-A0 exp-αArL2cos2 θ1k(T-T0)sin θ120π exp-A0 exp-αArL2cos2 θ1k(T-T0)sin θ12dθ1dθ1dφ1.
θ=arccos(sin θ1 sin φ1),
φ=a cos11+cot2 θ1 sec2 φ11/2.
ExEy=exp-NαHeNed2121-1-11×[R(-φN)×W0N×R(φN)]××[R(-φ1)×W01×R(φ1)]×121111×ExEy,
ηtramsmission=(ExEy)×Ex*Ey*(ExEy)×Ex*Ey*.
ηmax=sin2(A+B).
RoutSout=k=1NMk10.
Mk=cos ϕ+iξ sin ϕϕexp(-ζ)-iCRCS1/2ν sin ϕϕexp(-ζ)-iCRCS1/2ν sin ϕϕexp(-ζ)cos ϕ-iξ sin ϕϕexp(-ζ),
ζ=d2αCR+αCS+iψ,
ξ=id2αCR-αCS-iψ,
ϕ=(ζ2+ν2)1/2,ν=κd/(CRCS)1/2,
CR=cos θt,CS=cos θd,
κ=βr1-ir14r0,α=βr02r0,β=2πλ(r0)1/2,
ζ=dαcos θB,ξ=0,ϕ=ν=κdcos θB,
κ=βr14r0,α=βr02r0,β=2πλ(r0)1/2.
2πn/λr0,2πn/λr1,r0r1,
12r1(r0)1/2=n1,
2πλr0(r0)1/2=αHeNe,
Mk=exp-αHeNed2 cos θB×cosπdλ cos θBn1-i sinπdλ cos θBn1-i sinπdλ cos θBn1cosπdλ cos θBn1.
nbl(θ1, φ1, L)N
=exp-A(L)cos2 θ1k(T-T0)sin θ120π exp-A(L)cos2 θ1k(T-T0)sin θ12dθ1dφ1,
(L)=0 exp-αArL2 cos θB Arforlindicatinglightedzones(nbl)0Lforlindicatingdarkzones(nbl),
x2no2+y2no2+z2ne2=1.
x=(cos φ1)x1-(sin φ1)y1,
y=(cos θ1 sin φ1)x1+(cos θ1 cos φ1)y1-(sin θ1)z1,
z=(sin θ1 sin φ1)x1+(sin θ1 cos φ1)y1+(cos θ1)z1.
1ny12=sin2 φ1no2+cos2 θ1 cos2 φ1no2+sin2 θ1 cos2 φ1ne2,
1nz12=sin2 θ1no2+cos2 θ1ne2,
nzdark=0πsin θ2π1(sin2 θ)/no2+(cos2 θ)/ne21/2 dθdφ,
nydark=0πsin θ2π×1(sin2 φ+cos2 θ cos2 φ)/no2+(sin2 θ cos2 φ)/ne21/2 dθdφ,
nzlighted=0πexp[-A(d)cos2 θ/k(T-T0)](sin θ)/20π exp[-A(d)cos2 θ/k(T-T0)](sin θ)/2dθdφ×1(sin2 θ)/no2+(cos2 θ)/ne21/2dθdφ,
nylighted=0πexp[-A(d)cos2 θ/k(T-T0)](sin θ)/20π exp[-A(d)cos2 θ/k(T-T0)](sin θ)/2dθdφ×1(sin2 φ+cos2 θ cos2 φ)/no+(sin2 θ cos2 φ)/ne21/2 dθdφ.
Iz=Iincident cos2 ρ,
Iy=Iincident sin2 ρ.
n1z=nzlighted-nzdark2,
n1y=nylighted-nydark2.

Metrics