Abstract

We report >4.2-W mid-infrared (mid-IR) output (3.8 and 4.65 µm) and >2.1 W at 3.5 µm in ZnGeP2 (ZGP) optical parametric oscillators (OPO) pumped by a holmium-doped yttrium aluminum garnet (Ho:YAG) laser, directly pumped by a diode-pumped 1.9-µm thulium-doped yttrium lithium fluoride (Tm:YLF) laser. Optical-to-optical efficiency achieved is >7.2% (laser diode to mid-IR). In addition, a Ho:YAG-pumped ZGP OPO operation is achieved over a Ho:YAG temperature range of 80 °C at the 8-W (Ho:YAG) and 3-W (ZGP OPO) power levels.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Bowman and B. J. Feldman, “Demonstration and analysis of a holmium quasi-two level laser,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE 1627, 46–54 (1992).
    [CrossRef]
  2. P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, and E. P. Chicklis, “10W mid-IR holmium pumped ZnGeP2 OPO,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 226–229.
  3. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
  4. A. Finch, J. H. Flint, and D. M. Rines, “2.5-watt single-frequency cw Tm, Ho:YLF ring laser,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C. 1996), pp. 312–314.
  5. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crys-tals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  6. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21, 728–730 (1996).
    [CrossRef] [PubMed]
  7. C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron. 31, 1603–1605 (1995).
    [CrossRef]
  8. R. C. Stoneman and L. Esterowitz, “Intracavity-pumped 2.09-μm Ho:YAG laser,” Opt. Lett. 17, 736–738 (1992).
    [CrossRef] [PubMed]
  9. S. R. Bowman, J. E. Tucker, and S. Kirkpatrick, “Progress in the modeling of migration limited energy transfer in laser materials,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 519–523.
  10. R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
    [CrossRef]
  11. P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 204–206.
  12. L. A. Pomeranz, P. A. Budni, M. L. Lemons, C. A. Miller, J. R. Mosto, T. M. Pollak, and E. P. Chicklis, “Power scaling performance of Tm:YLF and Tm:YALO lasers,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 458–462.
  13. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
    [CrossRef]
  14. R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–540 (1973).
    [CrossRef]

1997 (1)

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

1996 (1)

1995 (2)

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron. 31, 1603–1605 (1995).
[CrossRef]

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

1992 (4)

R. C. Stoneman and L. Esterowitz, “Intracavity-pumped 2.09-μm Ho:YAG laser,” Opt. Lett. 17, 736–738 (1992).
[CrossRef] [PubMed]

S. R. Bowman and B. J. Feldman, “Demonstration and analysis of a holmium quasi-two level laser,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE 1627, 46–54 (1992).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crys-tals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

1973 (1)

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–540 (1973).
[CrossRef]

Barnes, N. P.

Beach, R. J.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Bowman, S. R.

S. R. Bowman and B. J. Feldman, “Demonstration and analysis of a holmium quasi-two level laser,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE 1627, 46–54 (1992).
[CrossRef]

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crys-tals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Choi, H. K.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron. 31, 1603–1605 (1995).
[CrossRef]

Emanuel, M. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Esterowitz, L.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

R. C. Stoneman and L. Esterowitz, “Intracavity-pumped 2.09-μm Ho:YAG laser,” Opt. Lett. 17, 736–738 (1992).
[CrossRef] [PubMed]

Fan, T. Y.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron. 31, 1603–1605 (1995).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Feldman, B. J.

S. R. Bowman and B. J. Feldman, “Demonstration and analysis of a holmium quasi-two level laser,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE 1627, 46–54 (1992).
[CrossRef]

Hart, D. W.

Honea, E. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Huber, G.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Jani, M.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crys-tals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crys-tals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Mitchell, S. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Nabors, C. D.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron. 31, 1603–1605 (1995).
[CrossRef]

Ochoa, J.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron. 31, 1603–1605 (1995).
[CrossRef]

Payne, S. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crys-tals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Sanchez, A.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron. 31, 1603–1605 (1995).
[CrossRef]

Skidmore, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crys-tals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Smith, R. G.

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–540 (1973).
[CrossRef]

Speth, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Stoneman, R. C.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

R. C. Stoneman and L. Esterowitz, “Intracavity-pumped 2.09-μm Ho:YAG laser,” Opt. Lett. 17, 736–738 (1992).
[CrossRef] [PubMed]

Sutton, S. B.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Turner, G. W.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron. 31, 1603–1605 (1995).
[CrossRef]

IEEE J. Quantum Electron. (5)

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crys-tals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron. 31, 1603–1605 (1995).
[CrossRef]

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–540 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

S. R. Bowman and B. J. Feldman, “Demonstration and analysis of a holmium quasi-two level laser,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE 1627, 46–54 (1992).
[CrossRef]

Other (5)

P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, and E. P. Chicklis, “10W mid-IR holmium pumped ZnGeP2 OPO,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 226–229.

A. Finch, J. H. Flint, and D. M. Rines, “2.5-watt single-frequency cw Tm, Ho:YLF ring laser,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C. 1996), pp. 312–314.

S. R. Bowman, J. E. Tucker, and S. Kirkpatrick, “Progress in the modeling of migration limited energy transfer in laser materials,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 519–523.

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 204–206.

L. A. Pomeranz, P. A. Budni, M. L. Lemons, C. A. Miller, J. R. Mosto, T. M. Pollak, and E. P. Chicklis, “Power scaling performance of Tm:YLF and Tm:YALO lasers,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 458–462.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Absorption cross section of Ho:YAG and emission bands of a-cut Tm:YLF and Tm:YALO3; horizontal boxes indicate tunable range achieved in the laboratory. For the Ho:YAG laser, Tm:YLF provides a good match; however, Tm:YALO3 can also pump Ho:YAG. (b) Absorption cross section of Ho:YLF (thick curve, π; thin curve, σ) and emission bands of a-cut Tm:YLF and TmYALO3. Bands indicate tunable range achieved in the laboratory.

Fig. 2
Fig. 2

Schematic representation of the resonantly pumped Ho laser. The Tm:YLF laser is dual end-pumped by two 30-W fiber-coupled laser diode banks, the (1.9-µm) output of the Tm laser in turn pumps the Ho:YAG resonator, which is Q-switched. OC, output coupler; HR, high reflector; HR45, 45-deg dichroic/high reflector; Br A/O, Brewster-cut acousto-optic Q switch.

Fig. 3
Fig. 3

Slope efficiency of the diode-pumped Tm:YLF laser. Greater than 22 W of cw output was achieved at 1.9 µm; the optical-to-optical efficiency was >37%, with a slope of 42%.

Fig. 4
Fig. 4

Slope efficiency of the Tm:YLF-pumped Ho:YAG laser. Greater than 9.5 W of Q-switched output was achieved at 2.09 µm; the optical-to-optical efficiency was >50%, with a slope of >59%.

Fig. 5
Fig. 5

Tm:YLF-pumped Ho:YAG Q-switched performance over temperature. Squares, data for 18.7 W of Tm pump; circles, data at 17 W of Tm pump. Data were obtained over a temperature range of 100 °C. Curves, linear fit to the data and indicate a slope of approximately 35 mW/°C.

Fig. 6
Fig. 6

Schematic of the optical beam line used to drive two ZGP optical parametric oscillators. HR, high reflector; OC, output coupler; WP, wave plate.

Fig. 7
Fig. 7

Slope efficiency performance achieved with the long-wave OPO (3.8 and 4.65 µm) versus Ho:YAG pump input. Greater than 4.2 W was achieved with only 7.9 W of Ho pump. Slope efficiency of 85% (curve, linear fit to the data) and optical-to-optical conversion of 54% was achieved. Laser diode to mid-IR efficiency >7% was obtained at 100% duty.

Fig. 8
Fig. 8

Ho:YAG and long-wave OPO performance over temperature. Circles, data for the Ho:YAG pump laser; squares, data for the OPO, both operated at 100% duty.

Fig. 9
Fig. 9

Ho:YAG-pumped short-wave (3.5 µm) OPO performance. Greater than 2.1 W of power was obtained with only 5.7 W of Ho pump. Slope efficiency of 44% (curve, linear fit to the data) and optical-to-optical conversion of 37% was achieved.

Metrics