Abstract

The use of interdigitated metal-semiconductor-metal contacts on semi-insulating GaAs enhances the responsivity of photoinduced-electromotive-force (photo-EMF) adaptive detectors by reducing the carrier transit time between electrical contacts. The unique polar character of the photo-EMF effect prevents the use of conventional interdigitated contact designs. For photo-EMF enhancement, the photoconductivity must be suppressed in every odd electrode pair. This is achieved through proton implantation to reduce the photocarrier lifetimes. The need to minimize the amount of area occupied by the back-action pairs while maintaining maximum collecting area between the active pairs is the source of the asymmetry. We present theoretical analysis of the scaling of the responsivity with the number of pairs. The theory is verified with experimental asymmetric interdigitated contact devices with 1, 2, 4, 8, 16, and 32 pairs of electrodes. The relative enhancement in responsivity is approximately equal to the number of pairs. The enhanced photo-EMF detectors have potential application to adaptive laser-based ultrasound detection.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying EMF in a nonuniformly illuminated semiconductor,” Sov. Tech. Phys. Lett. 12, 916–920 (1986).
  2. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
    [CrossRef]
  3. S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
    [CrossRef] [PubMed]
  4. S. I. Stepanov, “Sensitivity of non-steady-state photoelectromotive force-based adaptive photodetectors and characterization techniques,” Appl. Opt. 33, 915–920 (1994).
    [CrossRef] [PubMed]
  5. I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Holographic currents and the non-steady-state photoelectromotive force in cubic photorefractive crystals,” J. Opt. Soc. Am. B 9, 173–176 (1992).
    [CrossRef]
  6. C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, Bristol, UK, 1990).
  7. M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
    [CrossRef]
  8. Y. Matsuda, H. Nakano, and S. Nagai, “Optical detection of transient Lamb waves on rough surfaces by phase-conjugate method,” Jpn. J. Appl. Phys., Part 2 31, L987–L989 (1992).
    [CrossRef]
  9. P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
    [CrossRef]
  10. D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high bandwidth, auto-compensating, laser-based ultrasound detectors,” Mater. Sci. Forum 210–213, 425–432 (1996).
    [CrossRef]
  11. I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991).
    [CrossRef]
  12. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
    [CrossRef]
  13. A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
    [CrossRef]
  14. B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in pho-torefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
    [CrossRef]
  15. P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
    [CrossRef]
  16. I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
    [CrossRef]
  17. I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
    [CrossRef]
  18. C.-C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
    [CrossRef] [PubMed]
  19. C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
    [CrossRef]
  20. J.-P. Monchalin, “Optical detection of ultrasound,” Rev. Prog. Quant. Nondestr. Eval. 12, 495–506 (1993).
    [CrossRef]
  21. D. M. Pepper, G. J. Dunning, P. V. Mitchell, S. W. McCahon, M. B. Klein, and T. R. O. O’Meara, “Materials inspection and process control using compensated laser ultrasound evaluation (CLUE): demonstration of a low-cost laser ultrasonic sensor,” in Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, L. R. Migliore, C. Roychoudhuri, R. D. Schaeffer, J. Mazumder, and J. J. Dubowski, eds., Proc. SPIE 2703, 91–102 (1996).
    [CrossRef]
  22. S. Stepanov, N. Korneev, S. Mansurova, D. Mayorga Cruz, M. Krasin’kova, and M. B. Klein, “Longitudinal configuration of photo-emf signal detection with tilted orientation of the interference fringes,” presented at the Conference on Lasers and Electro-Optics (CLEO’98), San Francisco, Calif., May 3–7, 1998.
  23. W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, and H. Beneking, “The DSI diode—a fast large area optoelectronic detector,” IEEE Trans. Electron Devices 32, 1034–1036 (1985).
    [CrossRef]
  24. M. Ito and O. Wada, “Low dark current GaAs metal-semiconductor-metal photodiodes using WS:/snbx contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986).
    [CrossRef]
  25. J. H. Burroughes, “H_MESFET compatible GaAs/AlGaAs MSM photodetector,” IEEE Photon. Technol. Lett. 3, 660–662 (1991).
    [CrossRef]
  26. D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, “Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts,” Opt. Lett. 24, 342–344 (1999).
    [CrossRef]
  27. J. C. Dyment, J. C. North, and L. A. D’Asaro, “Optical and electrical properties of proton-bombarded p-type GaAs,” J. Appl. Phys. 44, 207–213 (1973).
    [CrossRef]
  28. B. R. Pruniaux, J. C. North, and G. L. Miller, “Compensation of n-type GaAs by proton bombardment,” presented at the Conference on Ion Implantation in Semiconductors, Garmisch-Partenkirchen, Denmark, May 24–28, 1971.
  29. B. Schwartz, L. A. Koszi, P. J. Anthony, and R. L. Hartman, “Thermal annealing of proton-bombarded GaAs and AlGaAs,” J. Electrochem. Soc. 131, 1703–1707 (1984).
    [CrossRef]
  30. Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
    [CrossRef]
  31. M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
    [CrossRef]
  32. M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, and J. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
    [CrossRef]
  33. D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
    [CrossRef]
  34. G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O’Meara, “Optimizing the photo-induced emf response for high-speed compensation and broadband laser-based ultrasonic remote sensing,” in Nondestructive Characterization of Materials, R. Green, Jr., ed. (Plenum, New York, 1998), Vol. VIII, pp. 21–26.

1999 (2)

1998 (2)

I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

1997 (2)

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

1996 (3)

D. M. Pepper, G. J. Dunning, P. V. Mitchell, S. W. McCahon, M. B. Klein, and T. R. O. O’Meara, “Materials inspection and process control using compensated laser ultrasound evaluation (CLUE): demonstration of a low-cost laser ultrasonic sensor,” in Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, L. R. Migliore, C. Roychoudhuri, R. D. Schaeffer, J. Mazumder, and J. J. Dubowski, eds., Proc. SPIE 2703, 91–102 (1996).
[CrossRef]

D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high bandwidth, auto-compensating, laser-based ultrasound detectors,” Mater. Sci. Forum 210–213, 425–432 (1996).
[CrossRef]

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in pho-torefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

1995 (2)

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

C.-C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
[CrossRef] [PubMed]

1994 (2)

S. I. Stepanov, “Sensitivity of non-steady-state photoelectromotive force-based adaptive photodetectors and characterization techniques,” Appl. Opt. 33, 915–920 (1994).
[CrossRef] [PubMed]

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

1993 (1)

J.-P. Monchalin, “Optical detection of ultrasound,” Rev. Prog. Quant. Nondestr. Eval. 12, 495–506 (1993).
[CrossRef]

1992 (2)

Y. Matsuda, H. Nakano, and S. Nagai, “Optical detection of transient Lamb waves on rough surfaces by phase-conjugate method,” Jpn. J. Appl. Phys., Part 2 31, L987–L989 (1992).
[CrossRef]

I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Holographic currents and the non-steady-state photoelectromotive force in cubic photorefractive crystals,” J. Opt. Soc. Am. B 9, 173–176 (1992).
[CrossRef]

1991 (4)

M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, and J. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

J. H. Burroughes, “H_MESFET compatible GaAs/AlGaAs MSM photodetector,” IEEE Photon. Technol. Lett. 3, 660–662 (1991).
[CrossRef]

1990 (2)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

1989 (1)

M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
[CrossRef]

1987 (1)

M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
[CrossRef]

1986 (2)

M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying EMF in a nonuniformly illuminated semiconductor,” Sov. Tech. Phys. Lett. 12, 916–920 (1986).

M. Ito and O. Wada, “Low dark current GaAs metal-semiconductor-metal photodiodes using WS:/snbx contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986).
[CrossRef]

1985 (2)

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, and H. Beneking, “The DSI diode—a fast large area optoelectronic detector,” IEEE Trans. Electron Devices 32, 1034–1036 (1985).
[CrossRef]

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

1984 (1)

B. Schwartz, L. A. Koszi, P. J. Anthony, and R. L. Hartman, “Thermal annealing of proton-bombarded GaAs and AlGaAs,” J. Electrochem. Soc. 131, 1703–1707 (1984).
[CrossRef]

1973 (1)

J. C. Dyment, J. C. North, and L. A. D’Asaro, “Optical and electrical properties of proton-bombarded p-type GaAs,” J. Appl. Phys. 44, 207–213 (1973).
[CrossRef]

Anthony, P. J.

B. Schwartz, L. A. Koszi, P. J. Anthony, and R. L. Hartman, “Thermal annealing of proton-bombarded GaAs and AlGaAs,” J. Electrochem. Soc. 131, 1703–1707 (1984).
[CrossRef]

Apostol, I.

Arnold, W.

M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
[CrossRef]

Axmann, A.

M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, and J. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

Bacher, G. D.

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, “Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts,” Opt. Lett. 24, 342–344 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Beneking, H.

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, and H. Beneking, “The DSI diode—a fast large area optoelectronic detector,” IEEE Trans. Electron Devices 32, 1034–1036 (1985).
[CrossRef]

Betz, B.

M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
[CrossRef]

Blouin, A.

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

Burroughes, J. H.

J. H. Burroughes, “H_MESFET compatible GaAs/AlGaAs MSM photodetector,” IEEE Photon. Technol. Lett. 3, 660–662 (1991).
[CrossRef]

Chiao, M. P.

Coy, J. A.

D’Asaro, L. A.

J. C. Dyment, J. C. North, and L. A. D’Asaro, “Optical and electrical properties of proton-bombarded p-type GaAs,” J. Appl. Phys. 44, 207–213 (1973).
[CrossRef]

Davidson, F.

Delaye, P.

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

Drolet, D.

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

Dunning, G. J.

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, “Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts,” Opt. Lett. 24, 342–344 (1999).
[CrossRef]

D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high bandwidth, auto-compensating, laser-based ultrasound detectors,” Mater. Sci. Forum 210–213, 425–432 (1996).
[CrossRef]

D. M. Pepper, G. J. Dunning, P. V. Mitchell, S. W. McCahon, M. B. Klein, and T. R. O. O’Meara, “Materials inspection and process control using compensated laser ultrasound evaluation (CLUE): demonstration of a low-cost laser ultrasonic sensor,” in Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, L. R. Migliore, C. Roychoudhuri, R. D. Schaeffer, J. Mazumder, and J. J. Dubowski, eds., Proc. SPIE 2703, 91–102 (1996).
[CrossRef]

Dyment, J. C.

J. C. Dyment, J. C. North, and L. A. D’Asaro, “Optical and electrical properties of proton-bombarded p-type GaAs,” J. Appl. Phys. 44, 207–213 (1973).
[CrossRef]

Geelen, H. J.

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, and H. Beneking, “The DSI diode—a fast large area optoelectronic detector,” IEEE Trans. Electron Devices 32, 1034–1036 (1985).
[CrossRef]

Gossard, A. C.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Hartman, R. L.

B. Schwartz, L. A. Koszi, P. J. Anthony, and R. L. Hartman, “Thermal annealing of proton-bombarded GaAs and AlGaAs,” J. Electrochem. Soc. 131, 1703–1707 (1984).
[CrossRef]

Ing, R. K.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in pho-torefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

Ito, M.

M. Ito and O. Wada, “Low dark current GaAs metal-semiconductor-metal photodiodes using WS:/snbx contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986).
[CrossRef]

Johnson, M. B.

M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
[CrossRef]

Klein, M. B.

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, “Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts,” Opt. Lett. 24, 342–344 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
[CrossRef]

D. M. Pepper, G. J. Dunning, P. V. Mitchell, S. W. McCahon, M. B. Klein, and T. R. O. O’Meara, “Materials inspection and process control using compensated laser ultrasound evaluation (CLUE): demonstration of a low-cost laser ultrasonic sensor,” in Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, L. R. Migliore, C. Roychoudhuri, R. D. Schaeffer, J. Mazumder, and J. J. Dubowski, eds., Proc. SPIE 2703, 91–102 (1996).
[CrossRef]

D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high bandwidth, auto-compensating, laser-based ultrasound detectors,” Mater. Sci. Forum 210–213, 425–432 (1996).
[CrossRef]

Kluge, J.

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, and H. Beneking, “The DSI diode—a fast large area optoelectronic detector,” IEEE Trans. Electron Devices 32, 1034–1036 (1985).
[CrossRef]

Koszi, L. A.

B. Schwartz, L. A. Koszi, P. J. Anthony, and R. L. Hartman, “Thermal annealing of proton-bombarded GaAs and AlGaAs,” J. Electrochem. Soc. 131, 1703–1707 (1984).
[CrossRef]

Krishnaswamy, S.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in pho-torefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

Kruger, R. A.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Kuhl, J.

M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, and J. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

Lahiri, I.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
[CrossRef]

Lambsdorff, M.

M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, and J. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

Linke, R. A.

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

Matsuda, Y.

Y. Matsuda, H. Nakano, and S. Nagai, “Optical detection of transient Lamb waves on rough surfaces by phase-conjugate method,” Jpn. J. Appl. Phys., Part 2 31, L987–L989 (1992).
[CrossRef]

McCahon, S. W.

D. M. Pepper, G. J. Dunning, P. V. Mitchell, S. W. McCahon, M. B. Klein, and T. R. O. O’Meara, “Materials inspection and process control using compensated laser ultrasound evaluation (CLUE): demonstration of a low-cost laser ultrasonic sensor,” in Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, L. R. Migliore, C. Roychoudhuri, R. D. Schaeffer, J. Mazumder, and J. J. Dubowski, eds., Proc. SPIE 2703, 91–102 (1996).
[CrossRef]

D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high bandwidth, auto-compensating, laser-based ultrasound detectors,” Mater. Sci. Forum 210–213, 425–432 (1996).
[CrossRef]

McGill, T. C.

M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
[CrossRef]

Melloch, M. R.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
[CrossRef]

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

Miller, D. A. B.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Mitchell, P. V.

D. M. Pepper, G. J. Dunning, P. V. Mitchell, S. W. McCahon, M. B. Klein, and T. R. O. O’Meara, “Materials inspection and process control using compensated laser ultrasound evaluation (CLUE): demonstration of a low-cost laser ultrasonic sensor,” in Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, L. R. Migliore, C. Roychoudhuri, R. D. Schaeffer, J. Mazumder, and J. J. Dubowski, eds., Proc. SPIE 2703, 91–102 (1996).
[CrossRef]

D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high bandwidth, auto-compensating, laser-based ultrasound detectors,” Mater. Sci. Forum 210–213, 425–432 (1996).
[CrossRef]

Monchalin, J.-P.

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

J.-P. Monchalin, “Optical detection of ultrasound,” Rev. Prog. Quant. Nondestr. Eval. 12, 495–506 (1993).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

Montmorillon, L.-A.

Nagai, S.

Y. Matsuda, H. Nakano, and S. Nagai, “Optical detection of transient Lamb waves on rough surfaces by phase-conjugate method,” Jpn. J. Appl. Phys., Part 2 31, L987–L989 (1992).
[CrossRef]

Nakano, H.

Y. Matsuda, H. Nakano, and S. Nagai, “Optical detection of transient Lamb waves on rough surfaces by phase-conjugate method,” Jpn. J. Appl. Phys., Part 2 31, L987–L989 (1992).
[CrossRef]

Nolte, D. D.

D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, “Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts,” Opt. Lett. 24, 342–344 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
[CrossRef]

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

North, J. C.

J. C. Dyment, J. C. North, and L. A. D’Asaro, “Optical and electrical properties of proton-bombarded p-type GaAs,” J. Appl. Phys. 44, 207–213 (1973).
[CrossRef]

O’Meara, T. R.

D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high bandwidth, auto-compensating, laser-based ultrasound detectors,” Mater. Sci. Forum 210–213, 425–432 (1996).
[CrossRef]

O’Meara, T. R. O.

D. M. Pepper, G. J. Dunning, P. V. Mitchell, S. W. McCahon, M. B. Klein, and T. R. O. O’Meara, “Materials inspection and process control using compensated laser ultrasound evaluation (CLUE): demonstration of a low-cost laser ultrasonic sensor,” in Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, L. R. Migliore, C. Roychoudhuri, R. D. Schaeffer, J. Mazumder, and J. J. Dubowski, eds., Proc. SPIE 2703, 91–102 (1996).
[CrossRef]

Paul, M.

M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
[CrossRef]

Paulter, N. G.

M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
[CrossRef]

Pepper, D. M.

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, “Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts,” Opt. Lett. 24, 342–344 (1999).
[CrossRef]

D. M. Pepper, G. J. Dunning, P. V. Mitchell, S. W. McCahon, M. B. Klein, and T. R. O. O’Meara, “Materials inspection and process control using compensated laser ultrasound evaluation (CLUE): demonstration of a low-cost laser ultrasonic sensor,” in Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, L. R. Migliore, C. Roychoudhuri, R. D. Schaeffer, J. Mazumder, and J. J. Dubowski, eds., Proc. SPIE 2703, 91–102 (1996).
[CrossRef]

D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high bandwidth, auto-compensating, laser-based ultrasound detectors,” Mater. Sci. Forum 210–213, 425–432 (1996).
[CrossRef]

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying EMF in a nonuniformly illuminated semiconductor,” Sov. Tech. Phys. Lett. 12, 916–920 (1986).

Popa, D.

Pouet, B. F.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in pho-torefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

Pyrak-Nolte, L. J.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Roosen, G.

Rosenzweig, J.

M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, and J. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

Rossomakhin, I.

I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991).
[CrossRef]

Roth, W.

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, and H. Beneking, “The DSI diode—a fast large area optoelectronic detector,” IEEE Trans. Electron Devices 32, 1034–1036 (1985).
[CrossRef]

Royer, D.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in pho-torefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

Schneider, J.

M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, and J. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

Schumacher, H.

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, and H. Beneking, “The DSI diode—a fast large area optoelectronic detector,” IEEE Trans. Electron Devices 32, 1034–1036 (1985).
[CrossRef]

Schwartz, B.

B. Schwartz, L. A. Koszi, P. J. Anthony, and R. L. Hartman, “Thermal annealing of proton-bombarded GaAs and AlGaAs,” J. Electrochem. Soc. 131, 1703–1707 (1984).
[CrossRef]

Silberberg, Y.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Smith, P. W.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Sokolov, I. A.

Stepanov, S. I.

S. I. Stepanov, “Sensitivity of non-steady-state photoelectromotive force-based adaptive photodetectors and characterization techniques,” Appl. Opt. 33, 915–920 (1994).
[CrossRef] [PubMed]

I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Holographic currents and the non-steady-state photoelectromotive force in cubic photorefractive crystals,” J. Opt. Soc. Am. B 9, 173–176 (1992).
[CrossRef]

I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying EMF in a nonuniformly illuminated semiconductor,” Sov. Tech. Phys. Lett. 12, 916–920 (1986).

Tell, B.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Trivedi, S.

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

C.-C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
[CrossRef] [PubMed]

Trofimov, G. S.

I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Holographic currents and the non-steady-state photoelectromotive force in cubic photorefractive crystals,” J. Opt. Soc. Am. B 9, 173–176 (1992).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying EMF in a nonuniformly illuminated semiconductor,” Sov. Tech. Phys. Lett. 12, 916–920 (1986).

Vlad, V. I.

Wada, O.

M. Ito and O. Wada, “Low dark current GaAs metal-semiconductor-metal photodiodes using WS:/snbx contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986).
[CrossRef]

Wang, C.-C.

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

C.-C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
[CrossRef] [PubMed]

Wiegmann, W.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (10)

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
[CrossRef]

M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, and J. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in pho-torefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Ito and O. Wada, “Low dark current GaAs metal-semiconductor-metal photodiodes using WS:/snbx contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. H. Burroughes, “H_MESFET compatible GaAs/AlGaAs MSM photodetector,” IEEE Photon. Technol. Lett. 3, 660–662 (1991).
[CrossRef]

IEEE Trans. Electron Devices (1)

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, and H. Beneking, “The DSI diode—a fast large area optoelectronic detector,” IEEE Trans. Electron Devices 32, 1034–1036 (1985).
[CrossRef]

J. Appl. Phys. (3)

J. C. Dyment, J. C. North, and L. A. D’Asaro, “Optical and electrical properties of proton-bombarded p-type GaAs,” J. Appl. Phys. 44, 207–213 (1973).
[CrossRef]

D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

J. Electrochem. Soc. (1)

B. Schwartz, L. A. Koszi, P. J. Anthony, and R. L. Hartman, “Thermal annealing of proton-bombarded GaAs and AlGaAs,” J. Electrochem. Soc. 131, 1703–1707 (1984).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys., Part 2 (1)

Y. Matsuda, H. Nakano, and S. Nagai, “Optical detection of transient Lamb waves on rough surfaces by phase-conjugate method,” Jpn. J. Appl. Phys., Part 2 31, L987–L989 (1992).
[CrossRef]

Mater. Sci. Forum (1)

D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high bandwidth, auto-compensating, laser-based ultrasound detectors,” Mater. Sci. Forum 210–213, 425–432 (1996).
[CrossRef]

Opt. Commun. (1)

I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

D. M. Pepper, G. J. Dunning, P. V. Mitchell, S. W. McCahon, M. B. Klein, and T. R. O. O’Meara, “Materials inspection and process control using compensated laser ultrasound evaluation (CLUE): demonstration of a low-cost laser ultrasonic sensor,” in Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, L. R. Migliore, C. Roychoudhuri, R. D. Schaeffer, J. Mazumder, and J. J. Dubowski, eds., Proc. SPIE 2703, 91–102 (1996).
[CrossRef]

Rev. Prog. Quant. Nondestr. Eval. (1)

J.-P. Monchalin, “Optical detection of ultrasound,” Rev. Prog. Quant. Nondestr. Eval. 12, 495–506 (1993).
[CrossRef]

Sov. Tech. Phys. Lett. (1)

M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying EMF in a nonuniformly illuminated semiconductor,” Sov. Tech. Phys. Lett. 12, 916–920 (1986).

Other (4)

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O’Meara, “Optimizing the photo-induced emf response for high-speed compensation and broadband laser-based ultrasonic remote sensing,” in Nondestructive Characterization of Materials, R. Green, Jr., ed. (Plenum, New York, 1998), Vol. VIII, pp. 21–26.

S. Stepanov, N. Korneev, S. Mansurova, D. Mayorga Cruz, M. Krasin’kova, and M. B. Klein, “Longitudinal configuration of photo-emf signal detection with tilted orientation of the interference fringes,” presented at the Conference on Lasers and Electro-Optics (CLEO’98), San Francisco, Calif., May 3–7, 1998.

C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, Bristol, UK, 1990).

B. R. Pruniaux, J. C. North, and G. L. Miller, “Compensation of n-type GaAs by proton bombardment,” presented at the Conference on Ion Implantation in Semiconductors, Garmisch-Partenkirchen, Denmark, May 24–28, 1971.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Design parameters for the AIDC devices: contact width, a; back-action width, b; collecting width, W; length of the electrodes, L; and number of electrode pairs, N. The photo-EMF in the back-action regions is disabled through proton implantation.

Fig. 2
Fig. 2

Electron free-carrier lifetimes in GaAs as a function of proton dose. This lifetime is limited to values of ∼500 fs for doses above 1×1014 cm-2. Figure taken from Ref. 33.

Fig. 3
Fig. 3

Infrared micrograph illuminated through the substrate. The AIDC device, with N=16,b=50 µm, and a=10 µm, shows AuGe/Au contacts. The proton-implanted regions are not visible.

Fig. 4
Fig. 4

Experimental setup for performing calibrated photo-EMF responsivity experiments. The electro-optic (EO) modulator simulates an equivalent surface displacement that is calibrated with the Mach–Zender interferometer. The argon-ion laser is stabilized for single-frequency performance. BS, beam splitter.

Fig. 5
Fig. 5

Responsivity versus grating period for AIDC devices with back-action widths of b=50 µm for a modulation frequency of 8 Mhz. The number of pairs increases from a single pair (conventional photo-EMF device) to N=32 pairs.

Fig. 6
Fig. 6

Responsivity versus modulation frequency for AIDC devices with back-action widths of b=50 µm for a grating period Λ=40 µm. The compensation bandwidth (the lowfrequency roll-off) increases with increasing N from a value that is less than 100 kHz for one pair up to nearly 2 MHz for the N=32 pair device. The high-frequency roll-off is caused by the combined device and amplifier response.

Fig. 7
Fig. 7

Plot of the average enhancement of the responsivity versus the number of contact pairs N. There is no significant difference between devices with b=100 µm and those with b=50 µm. The curves are from Eq. (10) for three different proton implant doses.

Fig. 8
Fig. 8

Plot of the measured device resistance versus N for devices with b=100 µm. The curves are from Eq. (13) for three different proton implant doses.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

jω=-12n0eμξEDm2ΔωτM1+(ωτg)2,
τg=τM(1+K2LD2),
jω=-12n0eμξED(1+K2LD2)m2Δ.
i=-L21(1+K2LD2)I0τehνμEscm2Δ,
i=-121(1+K2LD2)I0WLτttransitm2ehνΔ,
i=-121(1+K2LD2)Pτttransitm2ehνΔ,
i=-2PsPLOPLO+Psτttransit1(1+K2LD2)ehνΔ.
REMF=2R[1+(Ps/PLO)](1+K2LD2)
Wdev(N)=W+(N-1)(2a+b).
i=-L2I0ehνEscm2Δ[Nμcτc-(N-1)μbτb],
τbτc<110(N-1)Nμcμb
1Rtot=N1Rc+(N-1)1Rb,
Rtot=1Lhνe1I0Wcb[N2bμcτc+(N-1)Wcμbτb],
τbτc<110NN-1μcμbbWc/N,
Rtot=1Lhνe1I0WcN2μcτc.

Metrics