Abstract

We demonstrate a new scheme for dispersion compensation in femtosecond laser cavities, exploiting the observation that the negative dispersion from a Brewster interface can be strongly enhanced by the focusing effect of a curved surface on a prism or of a thermal lens in the gain medium. Based on this scheme, a high-power Nd:glass laser generated femtosecond pulses without a prism pair. We present a detailed analytical, numerical, and experimental analysis of the discovered dispersion effects. Also, we anticipate the application of these effects for compensation of higher-order dispersion in a broad bandwidth, using a specially designed nonspherically curved mirror surface.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
    [CrossRef] [PubMed]
  2. D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
    [CrossRef] [PubMed]
  3. J. P. Gordon and R. L. Fork, “Optical resonator with negative dispersion,” Opt. Lett. 9, 153–155 (1984).
    [CrossRef] [PubMed]
  4. M. Ramaswamy-Paye and J. G. Fujimoto, “Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers,” Opt. Lett. 19, 1756–1758 (1994).
    [CrossRef] [PubMed]
  5. O. E. Martínez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
    [CrossRef]
  6. O. E. Martínez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296–300 (1989).
    [CrossRef]
  7. V. Magni, “Multielement stable resonators containing a variable lens,” J. Opt. Soc. Am. A 4, 1962–1969 (1987).
    [CrossRef]
  8. J. Aus der Au, F. H. Loesel, F. Morier-Genoud, M. Moser, and U. Keller, “Femtosecond diode-pumped Nd:glass laser with more than 1-W average output power,” Opt. Lett. 23, 271–273 (1998).
    [CrossRef]
  9. U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
    [CrossRef]
  10. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [CrossRef]

1998

1996

D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

1994

1989

O. E. Martínez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296–300 (1989).
[CrossRef]

1988

O. E. Martínez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[CrossRef]

1987

1984

Aus der Au, J.

J. Aus der Au, F. H. Loesel, F. Morier-Genoud, M. Moser, and U. Keller, “Femtosecond diode-pumped Nd:glass laser with more than 1-W average output power,” Opt. Lett. 23, 271–273 (1998).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Fork, R. L.

Fujimoto, J. G.

Gordon, J. P.

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Keller, U.

J. Aus der Au, F. H. Loesel, F. Morier-Genoud, M. Moser, and U. Keller, “Femtosecond diode-pumped Nd:glass laser with more than 1-W average output power,” Opt. Lett. 23, 271–273 (1998).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
[CrossRef] [PubMed]

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
[CrossRef] [PubMed]

Loesel, F. H.

Magni, V.

Martinez, O. E.

Martínez, O. E.

O. E. Martínez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296–300 (1989).
[CrossRef]

O. E. Martínez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Morier-Genoud, F.

Moser, M.

Ramaswamy-Paye, M.

Spühler, G. J.

Weingarten, K. J.

D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. B

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
[CrossRef]

IEEE J. Quantum Electron.

O. E. Martínez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[CrossRef]

O. E. Martínez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296–300 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simple cavities with prisms that have reflective coatings on the left side: (a) a prism with flat surfaces, (b) a prism with a curved surface on the left side. The beam paths for a wavelength λ and a reference wavelength λref are shown.

Fig. 2
Fig. 2

Beam radius in the prism and GDD of a simple cavity as in Fig. 1, both plotted as a function of the inverse radius of curvature on the left side of the prism. The dotted curve indicates the material dispersion alone. Assumptions: a prism made from Schott LG-760 glass (operated at Brewster’s angle), Lg=5 mm, L=40 cm.

Fig. 3
Fig. 3

Nd:glass laser cavity that generated femtosecond pulses without a prism pair: M1, concave mirror with 40-cm radius; M2, cylindrical mirror with 20.3-cm radius in the sagittal direction; M3, concave mirror with 150-cm radius.

Fig. 4
Fig. 4

Beam radius in the gain medium and overall GDD in the Nd:glass laser cavity as shown in Fig. 3, plotted as functions of the focusing power of the tangential thermal lens.

Fig. 5
Fig. 5

Changes of the GDD generated by the dispersion effect when mirror M1 (see Fig. 3) is moved away from the original position (x=0).

Fig. 6
Fig. 6

Solid curves, GDD as a function of wavelength for a simple cavity with spherical surfaces of four radii on the prism: R=1.45 m (lowest curve), R=1.50 m, R=1.55 m, and R=1.60 m (uppermost curve). Dashed curve, GDD for a cavity with an optimized nonspherical surface as described in the text.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dβdω=tan θndndω,
dβdω=tan θndndω1-cos θcos θ2 nLR-Lg-1.
Rcrit=Lg+nLcos θcos θ2.
GDDang=d2φdω2=-2 kLn2tan2 θdndω2×1-cos θcos θ2 nLR-Lg-1.
GDDang=-2 kLntan θdndωdβdω.

Metrics