R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).

[CrossRef]

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).

[CrossRef]

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).

[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

[CrossRef]
[PubMed]

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).

[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).

[CrossRef]

N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.

[CrossRef]

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).

[CrossRef]

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).

[CrossRef]

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP–InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).

[CrossRef]

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).

[CrossRef]

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[CrossRef]
[PubMed]

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).

[CrossRef]
[PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]
[PubMed]

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP–InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).

[CrossRef]

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).

[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).

[CrossRef]

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).

[CrossRef]
[PubMed]

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).

[CrossRef]

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[CrossRef]
[PubMed]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

[CrossRef]
[PubMed]

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).

[CrossRef]

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).

[CrossRef]
[PubMed]

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).

[CrossRef]

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).

[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).

[CrossRef]

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).

[CrossRef]

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).

[CrossRef]
[PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]
[PubMed]

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.

[CrossRef]

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).

[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

[CrossRef]
[PubMed]

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).

[CrossRef]

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).

[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).

[CrossRef]

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).

[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).

[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

[CrossRef]
[PubMed]

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).

[CrossRef]

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).

[CrossRef]

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).

[CrossRef]

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).

[CrossRef]

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).

[CrossRef]

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[CrossRef]
[PubMed]

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).

[CrossRef]
[PubMed]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

[CrossRef]
[PubMed]

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).

[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).

[CrossRef]

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).

[CrossRef]

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).

[CrossRef]

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).

[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).

[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

[CrossRef]
[PubMed]

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[CrossRef]
[PubMed]

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).

[CrossRef]
[PubMed]

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).

[CrossRef]

N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.

[CrossRef]

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).

[CrossRef]

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).

[CrossRef]

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).

[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).

[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

[CrossRef]
[PubMed]

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[CrossRef]
[PubMed]

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).

[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).

[CrossRef]

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[CrossRef]
[PubMed]

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).

[CrossRef]

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.

[CrossRef]

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).

[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).

[CrossRef]

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).

[CrossRef]
[PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).

[CrossRef]

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).

[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

[CrossRef]
[PubMed]

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).

[CrossRef]

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).

[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).

[CrossRef]

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).

[CrossRef]

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).

[CrossRef]

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).

[CrossRef]

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP–InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).

[CrossRef]

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).

[CrossRef]

N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.

[CrossRef]

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).

[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]
[PubMed]

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[CrossRef]
[PubMed]

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).

[CrossRef]
[PubMed]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

[CrossRef]
[PubMed]

See, for example, A. Yariv, Quantum Electronics (Wiley, New York, 1989).