Abstract

Refractive indices and extinction coefficients of lithium fluoride in thin film coated at room temperature are deduced from reflectance curves from 100 to 120 nm. These refractive indices are smaller but approximately follow the same dispersion law as crystalline LiF indices. The extinction coefficients are of the order of 0.1, i.e., 105 times higher than those of crystalline LiF. The absorption by the low-energy tail of an exciton band has been represented by the Urbach rule. These complex refractive indices have been used to optimize the first-order efficiency of LiF-coated Al gratings of the NASA FUSE (Far Ultraviolet Spectroscopic Explorer) space mission.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Palik, ed., Handbook of Optical Constants of Solids, 1st ed. (Academic, Orlando, Fla., 1985), pp. 675–693.
  2. R. Kato, “Optical constants of LiF in the extreme ultraviolet,” J. Phys. Soc. Jpn. 16, 1476 (1961).
    [CrossRef]
  3. D. M. Roessler and W. C. Walker, “Optical constants of magnesium oxide and lithium fluoride in the far ultraviolet,” J. Opt. Soc. Am. 57, 835–836 (1967).
    [CrossRef]
  4. P. Laporte and J. L. Subtil, “Refractive index of LiF from 105 to 200 nm,” J. Opt. Soc. Am. 72, 1558–1559 (1982).
    [CrossRef]
  5. P. Laporte, J. L. Subtil, M. Courbon, and M. Bon, “Vacuum-ultraviolet refractive index of LiF and MgF2 in the temperature range 80–300 K,” J. Opt. Soc. Am. 73, 1062–1069 (1983).
    [CrossRef]
  6. J. T. Cox, G. Hass, and J. E. Waylonis, “Further studies on LiF-overcoated aluminum mirrors with highest reflectance in the vacuum ultraviolet,” Appl. Opt. 7, 1535–1539 (1968).
    [CrossRef] [PubMed]
  7. M. R. Adriaens and B. Feuerbacher, “Improved LiF and MgF2 overcoated aluminum mirrors for vacuum ultraviolet astronomy,” Appl. Opt. 10, 958–959 (1971).
    [CrossRef] [PubMed]
  8. D. W. Angel, W. R. Hunter, R. Tousey, and G. Hass, “Extreme ultraviolet reflectance of LiF-coated aluminum mirrors,” J. Opt. Soc. Am. 51, 913–914 (1961).
    [CrossRef]
  9. D. A. Patterson and W. H. Vaughan, “Influence on crystal surface on the optical transmission of lithium fluoride in the vacuum ultraviolet spectrum,” J. Opt. Soc. Am. 53, 851–855 (1963).
    [CrossRef]
  10. T. L. Haltom, E. T. Arakawa, M. W. Williams, and E. Kretschmann, “Refractive index of LiF films as a function of time,” Appl. Opt. 18, 1233–1236 (1979).
    [CrossRef] [PubMed]
  11. E. T. Hutcheson, G. Hass, and J. T. Cox, “Effect of deposition rate and substrate temperature on the vacuum ultraviolet reflectance of MgF2- and LiF-overcoated aluminum mirrors,” Appl. Opt. 11, 2245–2248 (1972).
    [CrossRef] [PubMed]
  12. U. Kaiser, N. Kaiser, P. Weissbrodt, U. Mademann, E. Hacker, and H. Müller, “Structure of thin fluoride films deposited on amorphous substrates,” Thin Solid Films 217, 7–16 (1992).
    [CrossRef]
  13. W. R. Hunter, J. F. Osantowski, and G. Hass, “Reflectance of aluminum overcoated with MgF2 and LiF in the wavelength region from 1600 Å to 300 Å at various angles of incidence,” Appl. Opt. 10, 540–544 (1971).
    [CrossRef] [PubMed]
  14. W. R. Hunter, “Optical constants of metals in the extreme ultraviolet. II. Optical constants of aluminum, magnesium, and indium at wavelengths shorter than their critical wavelengths,” J. Opt. Soc. Am. 54, 208–212 (1964).
    [CrossRef]
  15. F. Abelès, “Sur la propagation des ondes électromagnétiques dans les milieux stratifiés,” Ann. Phys. (Paris) 3, 504–520 (1948).
  16. K. Kameswara Rao, T. J. Moravec, J. C. Rife, and R. N. Dexter, “Vacuum ultraviolet reflectivities of LiF, NaF, and KF,” Phys. Rev. B 12, 5937–5950 (1975).
    [CrossRef]
  17. D. M. Roessler and W. C. Walker, “Electronic spectrum of crystalline lithium fluoride,” J. Phys. Chem. Solids 28, 1507–1515 (1967).
    [CrossRef]
  18. J. E. Eby, K. J. Teegarden, and D. B. Dutton, “Ultraviolet absorption of alkali halides,” Phys. Rev. 116, 1099–1105 (1959).
    [CrossRef]
  19. R. S. Knox and N. Inchauspé, “Exciton states in ionic crystals,” Phys. Rev. 116, 1093–1099 (1959).
    [CrossRef]
  20. R. S. Knox and W. H. Knox, “Excitons,” in Encyclopedia of Applied Physics (VCH, Deerfield Beach, Fla., 1993), Vol. 6, pp. 311–324.
  21. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953).
    [CrossRef]
  22. T. Tomiki and T. Miyata, “Optical studies of alkali fluorides and alkaline earth fluorides in VUV region,” J. Phys. Soc. Jpn. 27, 658–678 (1969).
    [CrossRef]
  23. H. Mahr, “Absorption band shape and Urbach’s rule of localized excitons,” Phys. Rev. 132, 1880–1884 (1963).
    [CrossRef]
  24. R. Grange, V. Dauer, M. Saisse, M. Nevière, J. Flamand, and F. Bonnemason, “6000g/mm holographic flight gratings for the high resolution Far Ultraviolet Spectroscopic Explorer: efficiency, resolution and stray light measurements,” in Theory and Practice of Surface-Relief Diffraction Gratings: Synchrotron and Other Applications, W. R. McKinney and C. A. Palmer, eds., Proc. SPIE 3450, 103–112 (1998).
  25. M. Nevière, P. Vincent, and R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opt. 5, 65–77 (1974).
  26. V. Dauer, M. Nevière, R. Grange, and J. Flamand, “Comparison between measured and calculated efficiencies of high dimension, 6000 g/mm holographic gratings in the 90–120 nm range,” oral communication and résumé in Electromagnetic Optics, 19th Topical Meeting of the European Optical Society, Hyères France (September 7–9, 1998).
  27. V. Dauer, “Spectroscopie à haute résolution dans l’ultraviolet lointain:études des performances des réseaux du spectrographe spatial FUSE (Far Ultraviolet Spectroscopic Explorer)—Amélioration de l’efficacité de ces réseaux par usinage ionique,” Ph.D. dissertation, Université d’Aix-Marseille III (Marseille, France, 1998).

1998 (1)

R. Grange, V. Dauer, M. Saisse, M. Nevière, J. Flamand, and F. Bonnemason, “6000g/mm holographic flight gratings for the high resolution Far Ultraviolet Spectroscopic Explorer: efficiency, resolution and stray light measurements,” in Theory and Practice of Surface-Relief Diffraction Gratings: Synchrotron and Other Applications, W. R. McKinney and C. A. Palmer, eds., Proc. SPIE 3450, 103–112 (1998).

1992 (1)

U. Kaiser, N. Kaiser, P. Weissbrodt, U. Mademann, E. Hacker, and H. Müller, “Structure of thin fluoride films deposited on amorphous substrates,” Thin Solid Films 217, 7–16 (1992).
[CrossRef]

1983 (1)

1982 (1)

1979 (1)

1975 (1)

K. Kameswara Rao, T. J. Moravec, J. C. Rife, and R. N. Dexter, “Vacuum ultraviolet reflectivities of LiF, NaF, and KF,” Phys. Rev. B 12, 5937–5950 (1975).
[CrossRef]

1974 (1)

M. Nevière, P. Vincent, and R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opt. 5, 65–77 (1974).

1972 (1)

1971 (2)

1969 (1)

T. Tomiki and T. Miyata, “Optical studies of alkali fluorides and alkaline earth fluorides in VUV region,” J. Phys. Soc. Jpn. 27, 658–678 (1969).
[CrossRef]

1968 (1)

1967 (2)

D. M. Roessler and W. C. Walker, “Optical constants of magnesium oxide and lithium fluoride in the far ultraviolet,” J. Opt. Soc. Am. 57, 835–836 (1967).
[CrossRef]

D. M. Roessler and W. C. Walker, “Electronic spectrum of crystalline lithium fluoride,” J. Phys. Chem. Solids 28, 1507–1515 (1967).
[CrossRef]

1964 (1)

1963 (2)

1961 (2)

1959 (2)

J. E. Eby, K. J. Teegarden, and D. B. Dutton, “Ultraviolet absorption of alkali halides,” Phys. Rev. 116, 1099–1105 (1959).
[CrossRef]

R. S. Knox and N. Inchauspé, “Exciton states in ionic crystals,” Phys. Rev. 116, 1093–1099 (1959).
[CrossRef]

1953 (1)

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953).
[CrossRef]

1948 (1)

F. Abelès, “Sur la propagation des ondes électromagnétiques dans les milieux stratifiés,” Ann. Phys. (Paris) 3, 504–520 (1948).

Abelès, F.

F. Abelès, “Sur la propagation des ondes électromagnétiques dans les milieux stratifiés,” Ann. Phys. (Paris) 3, 504–520 (1948).

Adriaens, M. R.

Angel, D. W.

Arakawa, E. T.

Bon, M.

Bonnemason, F.

R. Grange, V. Dauer, M. Saisse, M. Nevière, J. Flamand, and F. Bonnemason, “6000g/mm holographic flight gratings for the high resolution Far Ultraviolet Spectroscopic Explorer: efficiency, resolution and stray light measurements,” in Theory and Practice of Surface-Relief Diffraction Gratings: Synchrotron and Other Applications, W. R. McKinney and C. A. Palmer, eds., Proc. SPIE 3450, 103–112 (1998).

Courbon, M.

Cox, J. T.

Dauer, V.

R. Grange, V. Dauer, M. Saisse, M. Nevière, J. Flamand, and F. Bonnemason, “6000g/mm holographic flight gratings for the high resolution Far Ultraviolet Spectroscopic Explorer: efficiency, resolution and stray light measurements,” in Theory and Practice of Surface-Relief Diffraction Gratings: Synchrotron and Other Applications, W. R. McKinney and C. A. Palmer, eds., Proc. SPIE 3450, 103–112 (1998).

Dexter, R. N.

K. Kameswara Rao, T. J. Moravec, J. C. Rife, and R. N. Dexter, “Vacuum ultraviolet reflectivities of LiF, NaF, and KF,” Phys. Rev. B 12, 5937–5950 (1975).
[CrossRef]

Dutton, D. B.

J. E. Eby, K. J. Teegarden, and D. B. Dutton, “Ultraviolet absorption of alkali halides,” Phys. Rev. 116, 1099–1105 (1959).
[CrossRef]

Eby, J. E.

J. E. Eby, K. J. Teegarden, and D. B. Dutton, “Ultraviolet absorption of alkali halides,” Phys. Rev. 116, 1099–1105 (1959).
[CrossRef]

Feuerbacher, B.

Flamand, J.

R. Grange, V. Dauer, M. Saisse, M. Nevière, J. Flamand, and F. Bonnemason, “6000g/mm holographic flight gratings for the high resolution Far Ultraviolet Spectroscopic Explorer: efficiency, resolution and stray light measurements,” in Theory and Practice of Surface-Relief Diffraction Gratings: Synchrotron and Other Applications, W. R. McKinney and C. A. Palmer, eds., Proc. SPIE 3450, 103–112 (1998).

Grange, R.

R. Grange, V. Dauer, M. Saisse, M. Nevière, J. Flamand, and F. Bonnemason, “6000g/mm holographic flight gratings for the high resolution Far Ultraviolet Spectroscopic Explorer: efficiency, resolution and stray light measurements,” in Theory and Practice of Surface-Relief Diffraction Gratings: Synchrotron and Other Applications, W. R. McKinney and C. A. Palmer, eds., Proc. SPIE 3450, 103–112 (1998).

Hacker, E.

U. Kaiser, N. Kaiser, P. Weissbrodt, U. Mademann, E. Hacker, and H. Müller, “Structure of thin fluoride films deposited on amorphous substrates,” Thin Solid Films 217, 7–16 (1992).
[CrossRef]

Haltom, T. L.

Hass, G.

Hunter, W. R.

Hutcheson, E. T.

Inchauspé, N.

R. S. Knox and N. Inchauspé, “Exciton states in ionic crystals,” Phys. Rev. 116, 1093–1099 (1959).
[CrossRef]

Kaiser, N.

U. Kaiser, N. Kaiser, P. Weissbrodt, U. Mademann, E. Hacker, and H. Müller, “Structure of thin fluoride films deposited on amorphous substrates,” Thin Solid Films 217, 7–16 (1992).
[CrossRef]

Kaiser, U.

U. Kaiser, N. Kaiser, P. Weissbrodt, U. Mademann, E. Hacker, and H. Müller, “Structure of thin fluoride films deposited on amorphous substrates,” Thin Solid Films 217, 7–16 (1992).
[CrossRef]

Kameswara Rao, K.

K. Kameswara Rao, T. J. Moravec, J. C. Rife, and R. N. Dexter, “Vacuum ultraviolet reflectivities of LiF, NaF, and KF,” Phys. Rev. B 12, 5937–5950 (1975).
[CrossRef]

Kato, R.

R. Kato, “Optical constants of LiF in the extreme ultraviolet,” J. Phys. Soc. Jpn. 16, 1476 (1961).
[CrossRef]

Knox, R. S.

R. S. Knox and N. Inchauspé, “Exciton states in ionic crystals,” Phys. Rev. 116, 1093–1099 (1959).
[CrossRef]

Kretschmann, E.

Laporte, P.

Mademann, U.

U. Kaiser, N. Kaiser, P. Weissbrodt, U. Mademann, E. Hacker, and H. Müller, “Structure of thin fluoride films deposited on amorphous substrates,” Thin Solid Films 217, 7–16 (1992).
[CrossRef]

Mahr, H.

H. Mahr, “Absorption band shape and Urbach’s rule of localized excitons,” Phys. Rev. 132, 1880–1884 (1963).
[CrossRef]

Miyata, T.

T. Tomiki and T. Miyata, “Optical studies of alkali fluorides and alkaline earth fluorides in VUV region,” J. Phys. Soc. Jpn. 27, 658–678 (1969).
[CrossRef]

Moravec, T. J.

K. Kameswara Rao, T. J. Moravec, J. C. Rife, and R. N. Dexter, “Vacuum ultraviolet reflectivities of LiF, NaF, and KF,” Phys. Rev. B 12, 5937–5950 (1975).
[CrossRef]

Müller, H.

U. Kaiser, N. Kaiser, P. Weissbrodt, U. Mademann, E. Hacker, and H. Müller, “Structure of thin fluoride films deposited on amorphous substrates,” Thin Solid Films 217, 7–16 (1992).
[CrossRef]

Nevière, M.

R. Grange, V. Dauer, M. Saisse, M. Nevière, J. Flamand, and F. Bonnemason, “6000g/mm holographic flight gratings for the high resolution Far Ultraviolet Spectroscopic Explorer: efficiency, resolution and stray light measurements,” in Theory and Practice of Surface-Relief Diffraction Gratings: Synchrotron and Other Applications, W. R. McKinney and C. A. Palmer, eds., Proc. SPIE 3450, 103–112 (1998).

M. Nevière, P. Vincent, and R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opt. 5, 65–77 (1974).

Osantowski, J. F.

Patterson, D. A.

Petit, R.

M. Nevière, P. Vincent, and R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opt. 5, 65–77 (1974).

Rife, J. C.

K. Kameswara Rao, T. J. Moravec, J. C. Rife, and R. N. Dexter, “Vacuum ultraviolet reflectivities of LiF, NaF, and KF,” Phys. Rev. B 12, 5937–5950 (1975).
[CrossRef]

Roessler, D. M.

D. M. Roessler and W. C. Walker, “Electronic spectrum of crystalline lithium fluoride,” J. Phys. Chem. Solids 28, 1507–1515 (1967).
[CrossRef]

D. M. Roessler and W. C. Walker, “Optical constants of magnesium oxide and lithium fluoride in the far ultraviolet,” J. Opt. Soc. Am. 57, 835–836 (1967).
[CrossRef]

Saisse, M.

R. Grange, V. Dauer, M. Saisse, M. Nevière, J. Flamand, and F. Bonnemason, “6000g/mm holographic flight gratings for the high resolution Far Ultraviolet Spectroscopic Explorer: efficiency, resolution and stray light measurements,” in Theory and Practice of Surface-Relief Diffraction Gratings: Synchrotron and Other Applications, W. R. McKinney and C. A. Palmer, eds., Proc. SPIE 3450, 103–112 (1998).

Subtil, J. L.

Teegarden, K. J.

J. E. Eby, K. J. Teegarden, and D. B. Dutton, “Ultraviolet absorption of alkali halides,” Phys. Rev. 116, 1099–1105 (1959).
[CrossRef]

Tomiki, T.

T. Tomiki and T. Miyata, “Optical studies of alkali fluorides and alkaline earth fluorides in VUV region,” J. Phys. Soc. Jpn. 27, 658–678 (1969).
[CrossRef]

Tousey, R.

Urbach, F.

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953).
[CrossRef]

Vaughan, W. H.

Vincent, P.

M. Nevière, P. Vincent, and R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opt. 5, 65–77 (1974).

Walker, W. C.

D. M. Roessler and W. C. Walker, “Electronic spectrum of crystalline lithium fluoride,” J. Phys. Chem. Solids 28, 1507–1515 (1967).
[CrossRef]

D. M. Roessler and W. C. Walker, “Optical constants of magnesium oxide and lithium fluoride in the far ultraviolet,” J. Opt. Soc. Am. 57, 835–836 (1967).
[CrossRef]

Waylonis, J. E.

Weissbrodt, P.

U. Kaiser, N. Kaiser, P. Weissbrodt, U. Mademann, E. Hacker, and H. Müller, “Structure of thin fluoride films deposited on amorphous substrates,” Thin Solid Films 217, 7–16 (1992).
[CrossRef]

Williams, M. W.

Ann. Phys. (Paris) (1)

F. Abelès, “Sur la propagation des ondes électromagnétiques dans les milieux stratifiés,” Ann. Phys. (Paris) 3, 504–520 (1948).

Appl. Opt. (5)

J. Opt. Soc. Am. (6)

J. Phys. Chem. Solids (1)

D. M. Roessler and W. C. Walker, “Electronic spectrum of crystalline lithium fluoride,” J. Phys. Chem. Solids 28, 1507–1515 (1967).
[CrossRef]

J. Phys. Soc. Jpn. (2)

R. Kato, “Optical constants of LiF in the extreme ultraviolet,” J. Phys. Soc. Jpn. 16, 1476 (1961).
[CrossRef]

T. Tomiki and T. Miyata, “Optical studies of alkali fluorides and alkaline earth fluorides in VUV region,” J. Phys. Soc. Jpn. 27, 658–678 (1969).
[CrossRef]

Nouv. Rev. Opt. (1)

M. Nevière, P. Vincent, and R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opt. 5, 65–77 (1974).

Phys. Rev. (4)

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953).
[CrossRef]

H. Mahr, “Absorption band shape and Urbach’s rule of localized excitons,” Phys. Rev. 132, 1880–1884 (1963).
[CrossRef]

J. E. Eby, K. J. Teegarden, and D. B. Dutton, “Ultraviolet absorption of alkali halides,” Phys. Rev. 116, 1099–1105 (1959).
[CrossRef]

R. S. Knox and N. Inchauspé, “Exciton states in ionic crystals,” Phys. Rev. 116, 1093–1099 (1959).
[CrossRef]

Phys. Rev. B (1)

K. Kameswara Rao, T. J. Moravec, J. C. Rife, and R. N. Dexter, “Vacuum ultraviolet reflectivities of LiF, NaF, and KF,” Phys. Rev. B 12, 5937–5950 (1975).
[CrossRef]

Proc. SPIE (1)

R. Grange, V. Dauer, M. Saisse, M. Nevière, J. Flamand, and F. Bonnemason, “6000g/mm holographic flight gratings for the high resolution Far Ultraviolet Spectroscopic Explorer: efficiency, resolution and stray light measurements,” in Theory and Practice of Surface-Relief Diffraction Gratings: Synchrotron and Other Applications, W. R. McKinney and C. A. Palmer, eds., Proc. SPIE 3450, 103–112 (1998).

Thin Solid Films (1)

U. Kaiser, N. Kaiser, P. Weissbrodt, U. Mademann, E. Hacker, and H. Müller, “Structure of thin fluoride films deposited on amorphous substrates,” Thin Solid Films 217, 7–16 (1992).
[CrossRef]

Other (4)

R. S. Knox and W. H. Knox, “Excitons,” in Encyclopedia of Applied Physics (VCH, Deerfield Beach, Fla., 1993), Vol. 6, pp. 311–324.

E. D. Palik, ed., Handbook of Optical Constants of Solids, 1st ed. (Academic, Orlando, Fla., 1985), pp. 675–693.

V. Dauer, M. Nevière, R. Grange, and J. Flamand, “Comparison between measured and calculated efficiencies of high dimension, 6000 g/mm holographic gratings in the 90–120 nm range,” oral communication and résumé in Electromagnetic Optics, 19th Topical Meeting of the European Optical Society, Hyères France (September 7–9, 1998).

V. Dauer, “Spectroscopie à haute résolution dans l’ultraviolet lointain:études des performances des réseaux du spectrographe spatial FUSE (Far Ultraviolet Spectroscopic Explorer)—Amélioration de l’efficacité de ces réseaux par usinage ionique,” Ph.D. dissertation, Université d’Aix-Marseille III (Marseille, France, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dielectric parameters 1 and 2 of crystalline LiF as function of photon energy.

Fig. 2
Fig. 2

Absorption coefficient as function of photon energy. Solid curve, single crystal LiF from Ref. 3; dots, thin LiF films deposited onto room-temperature Al substrates from this work by use of data from Ref. 13.

Fig. 3
Fig. 3

Simulated absolute efficiencies of a 14-nm-LiF-coated 5350 grooves/mm sinusoidal Al grating in the first order as a function of wavelength; the modulation depth is shown as a parameter.

Fig. 4
Fig. 4

Simulated absolute efficiencies of an LiF-coated 5350 grooves/mm sinusoidal Al grating in the first order as a function of wavelength; the modulation depth is set to 35 nm, and the LiF thickness is shown as a parameter (curves are smoothed).

Tables (2)

Tables Icon

Table 1 Refractive Indices n2 and Extinction Coefficients k2 of Evaporated LiF for Wavelengths between 100 and 120 nm

Tables Icon

Table 2 Refraction Indices and Extinction Coefficients of Monocrystalline LiF for Various Wavelengths in the Vacuum Ultraviolet

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α(E, T)=α0 exp[-σ(T)(Eg-E)],

Metrics