R. Martin, A. J. Scroggie, G. L. Oppo, and W. J. Firth, “Stabilization and tracking of unstable patterns by Fourier space techniques,” Phys. Rev. Lett. 77, 4007–4012 (1996); W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).

[CrossRef]
[PubMed]

N. N. Rosanov and G. V. Khodova, “Diffractive autosolitons in nonlinear interferometers,” J. Opt. Soc. Am. B 7, 1057–1065 (1990); D. V. McLaughlin, J. V. Moloney, and A. C. Newel, “Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring resonator,” Phys. Rev. Lett. 51, 75–78 (1983); G. S. McDonald and W. J. Firth, “Spatial solitary-wave optical memory,” J. Opt. Soc. Am. B JOBPDE 7, 1328–1335 (1990); Y. S. Kivshar and Xiaoping Yang, “Dynamics of dark solitons,” in Chaos, Solitons and Fractals, L. A. Lugiato and M. S. El Nashie, eds. (Pergamon, New York, 1994), p. 1745.

[CrossRef]

W. J. Firth, “Spatial instabilities in a Kerr medium with a single feedback mirror,” J. Mod. Opt. 37, 151–155 (1990); G. P. D’Alessandro and W. J. Firth, “Hexagon spatial patterns for a Kerr slice with a feedback mirror,” Phys. Rev. A 46, 537–548 (1992); M. A. Vorontsov and W. Firth, “Pattern formation and competition in nonlinear optical systems with two-dimensional feedback,” Phys. Rev. A PLRAAN 49, 2891–2903 (1994).

[CrossRef]
[PubMed]

W. F. Ames, Numerical Methods for Partial Differential Equations (Academic, San Diego, Calif., 1992).

R. Neubecker, B. Thuering, and T. Tschudi, “Formation and characterization of hexagonal patterns in a single feedback experiment,” in a special issue on nonlinear optical structures, patterns, and chaos, Chaos, Solitons, and Fractals 4, L. A. Lugiato and M. S. El Nashie eds., 1307–1322 (1994); M. Tamburrini and E. Ciaramella, “Hexagonal beam filamentation in a liquid crystal film with single feedback mirror, 1355–1367.

[CrossRef]

H. Adachihara and H. Faid, “Two-dimensional nonlinear-interferometer pattern analysis and decay of spirals,” J. Opt. Soc. Am. B 10, 1242–1253 (1993); N. I. Zheleznikh, M. Le Berre, F. Ressayre, and A. Tallet, “Rotating spiral waves in a nonlinear optical system with spatial interaction,” in Chaos, Solitons and Fractals, L. A. Lugiato and M. S. El Nashie, eds. (Pergamon, New York, 1994).

[CrossRef]

M. A. Vorontsov, “‘Akhseals’ as a new class of spatio-temporal light field instabilities,” Quantum Electron. 23, 269–271 (1993); M. A. Vorontsov, N. G. Iroshnikov, and R. Abernathy, “Diffractive patterns in a nonlinear optical 2D-feedback system with field rotation,” in Chaos, Solitons and Fractals, L. A. Lugiato and M. S. El Nashie, eds. (Pergamon, New York, 1994).

[CrossRef]

E. Pampaloni, P. L. Ramazza, S. Residori, and F. T. Arecchi, “Two-dimensional crystals and quasicrystals in nonlinear optics,” Phys. Rev. Lett. 74, 258–261 (1995); B. Y. Rubinstein and L. M. Pismen, “Resonant two-dimensional patterns in optical cavities with rotated beam,” Phys. Rev. A 56, 4264–4272 (1997).

[CrossRef]
[PubMed]

F. T. Arecchi, S. Boccaletti, G. Giacomelli, P. L. Ramazza, and S. Residori, “Pattern and vortex dynamics in photorefractive oscillators,” in Self-Organization in Optical Systems and Applications in Information Technology, M. A. Vorontsov and W. B. Miller, eds. (Springer, New York, 1995).

C. A. Mead, “Neuromorphic electronic systems,” Proc. IEEE 78, 1629–1640 (1990); R. P. Lippmann and D. S. Touretzky, eds., Neural Information Processing Systems, (Morgan Kaufmann, San Mateo, Calif., 1995), Vol. 3.

[CrossRef]

M. C. Wu, “Micromachining for optical and opto-electronic systems,” Proc. IEEE 85, 1833–1997 (1997); G. V. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34, 2968–2972 (1995).

[CrossRef]
[PubMed]

S. Serati, G. Sharp, R. Serati, D. McKnight, and J. Stookley, “128×128 analog liquid crystal spatial light modulator,” in Optical Pattern Recognition VI, D. P. Casasent and T.-H. Chao, eds., Proc. SPIE 2490, 55–63 (1995); http://www.bnonlinear.com.

Currently developed arrays of turntable micromirrors as well as arrays of LC-on-silicon phase modulators may have 512×512 actuators with actuator (pixel) size less than 100 μm for MEMS and 15 μm for LC devices.

High-spatial resolution of both the micromirror and the photoarray allows the use of continuous-form mathematical models.

H. M. Gibbs, Optical Bistability—Controlling Light with Light (Academic, Orlando, Fla., 1985); I. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

J. V. Moloney and A. C. Newell, Nonlinear Optics (Addison-Wesley, Redwood City, Calif., 1991); L. A. Lugiato, M. Brambilla, and A. Gatti, “Optical pattern formation,” Adv. At. Mol. Opt. Phys. 40, 229–306 (1998); M. A. Vorontsov and W. B. Miller, eds., Self-Organization in Optical Systems and Applications in Information Technology (Springer, Berlin, 1995); C. O. Weiss, “Spatio-temporal structures. Part II,” Phys. Rep. 219, 311–328 (1992).

[CrossRef]

G. Hausler and M. Simon, “Generation of space and time picture oscillations by active incoherent feedback,” Opt. Acta 25, 327–336 (1978); J. P. Crutchfield, “Space-time dynamics in video-feedback,” Physica D 10, 229–338 (1984); G. Hausler, G. Seckmeyer, and T. Weiss, “Chaos and cooperation in nonlinear pictorial feedback systems,” Appl. Opt. APOPAI 25, 4656–4663 (1986).

[CrossRef]

U. Efron, ed., Spatial Light Modulator Technology: Materials, Devices, and Applications (Marcel Dekker, New York, 1995); V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech House, Norwood, Mass., 1999).

M. A. Vorontsov, Yu. D. Dumarevsky, D. V. Pruidze, and V. I. Shmalhauzen, “Autowave processes in optical feedback systems,” Izv. Akad. Nauk SSSR, Ser. Fiz. 52, 374–376 (1988); S. A. Akhmanov, M. A. Vorontsov, and V. Yu. Ivanov, “Large-scale transverse nonlinear interactions in laser beams; new types of nonlinear waves; onset of optical turbulence,” JETP Lett. 47, 611–614 (1988).

S. A. Akhmanov, M. A. Vorontsov, V. Yu. Ivanov, A. V. Larichev, and N. I. Zheleznykh, Controlling transverse-wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures,” J. Opt. Soc. Am. B 9, 78–90 (1992); R. Neubecker, G. L. Oppo, B. Thuering, and T. Tschudi, “Pattern formation in a liquid-crystal light valve with feedback, including polarization, saturation, and internal threshold effects,” Phys. Rev. A 52, 791–808 (1995); P. L. Ramazza, E. Pampaloni, S. Residori, and F. T. Arecchi, “Optical pattern formation in a Kerr-like medium with feedback,” Physica D PDNPDT 96, 259–271 (1996).

[CrossRef]
[PubMed]

H. Haken, Synergetics, an Introduction (Springer-Verlag, Berlin, 1997); G. Nicolis, Introduction to Nonlinear Science (Cambridge U. Press, Cambridge, UK, 1995).

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer-Verlag, Berlin, 1984); G. H. Gunaratne, Q. Ouyang, and H. L. Swinney, “Pattern formation in the presence of symmetries,” Phys. Rev. E 50, 2802–2820 (1994).

[CrossRef]