Abstract

A series of five fluorescent and ionic dimethylamino stilbazolium homologues with increasing conjugation length (from ethenyl to decapentaenyl) is investigated by high-frequency, amplitude-modulated femtosecond hyper-Rayleigh scattering at 1300 nm. A hyperpolarizability value that is not overestimated by the presence of a multiphoton fluorescence contribution is obtained from the Fourier analysis of the hyper-Rayleigh scattering signal. The demodulation curve (decrease of Fourier amplitude versus modulation frequency) is characterized by both the hyperpolarizability value and the fluorescence decay parameters. The fluorescence decay parameters are accurately determined independently by single-photon counting. A detailed analysis of the fluorescence decay parameters from the hyper-Rayleigh scattering demodulation curve and of their relation to the fluorescence decay parameters obtained from single-photon counting experiments is presented. The inherent hyperpolarizability value for these chromophores shows a maximum of (2045±35)×10-30 esu or (760±13)×10-50 C3 m3 J-2 for the hexatrienyl conjugation length. A comparison with theoretical calculations suggests the importance of trans–cis isomerization in the excited state.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nakanishi, H. Matsuda, S. Okada, and M. Kato, “Organic and polymeric ion-complexes for nonlinear optics,” in Materials Research Society International Meeting on Advanced Materials, M. Doyama, S. Somiya, and R. P. H. Chang, eds. (Materials Research Society, Pittsburgh, Pa., 1989), Vol. 1, pp. 97–104.
  2. G. R. Meredith, “Design and characterization of molecular and polymeric nonlinear optical materials: successes and pitfalls,” Nonlinear Optical Properties of Organic and Polymeric Materials, Vol. 233 of ACS Symposium Series, D. J. Williams, ed. (American Chemical Society, Washington, D.C., 1983), pp. 27–56.
  3. S. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large 2nd order optical nonlinearities,” Science 245, 626–628 (1989).
    [CrossRef] [PubMed]
  4. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
    [CrossRef] [PubMed]
  5. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
    [CrossRef]
  6. K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, Vol. 85 of Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, New York, 1994), Pt. 3, pp. 455–498.
  7. T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
    [CrossRef] [PubMed]
  8. X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays, and A. Persoons, “Evaluation of β of stilbazolium p-toluenesulfonates by the hyper-Rayleigh scattering method,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. R. Perry, eds., Proc. SPIE 2143, 41–51 (1994).
    [CrossRef]
  9. M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyperRayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
    [CrossRef]
  10. I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
    [CrossRef]
  11. G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
    [CrossRef]
  12. R. A. Huijts and G. L. J. Hesselink, “Length dependence of the second-order polarizability in conjugated organic molecules,” Chem. Phys. Lett. 126, 209–212 (1989).
    [CrossRef]
  13. J. L. Oudar and H. L. Person, “Second-order polarizabilities of some aromatic molecules,” Opt. Commun. 15, 258–262 (1975).
    [CrossRef]
  14. J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67, 446–457 (1977).
    [CrossRef]
  15. A. Dulcic, C. Flytzanis, C. L. Tang, D. Pépin, M. Fétizon, and Y. Hoppilliard, “Length dependence of the second-order optical nonlinearity in conjugated hydrocarbons,” J. Chem. Phys. 74, 1559–1563 (1981).
    [CrossRef]
  16. D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
    [CrossRef]
  17. K. Nogi, M.S. thesis (Tohoku University, Sendai, Japan, 1999) (in Japanese).
  18. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, “AM1: a new general purpose quantum chemical mechanical molecular model,” J. Am. Chem. Soc. 107, 3902–3909 (1985).
    [CrossRef]
  19. J. Ridley and M. Zerner, “An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines,” Theor. Chim. Acta 32, 111–134 (1973).
    [CrossRef]
  20. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1974).
    [CrossRef]
  21. T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J.-L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
    [CrossRef]
  22. E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
    [CrossRef]
  23. K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E 22, 297–305 (1989).
    [CrossRef]
  24. G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in long-wavelength hyper-Rayleigh scattering,” Opt. Lett. 24, 403–405 (1999).
    [CrossRef]
  25. G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, “Nonlinear optical properties of hemicyanine monolayers and the protonation effect,” Chem. Phys. Lett. 147, 420–424 (1988).
    [CrossRef]
  26. J. S. Schildkraut, T. L. Penner, C. S. Willand, and A. Ulman, “Absorption and second-harmonic generation of monomer and aggregate hemicyanine dye in Langmuir–Blodgett films,” Opt. Lett. 13, 134–136 (1988).
    [CrossRef]
  27. K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
    [CrossRef]
  28. B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
    [CrossRef] [PubMed]

1999

1998

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J.-L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

1996

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

1995

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyperRayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

1994

X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays, and A. Persoons, “Evaluation of β of stilbazolium p-toluenesulfonates by the hyper-Rayleigh scattering method,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. R. Perry, eds., Proc. SPIE 2143, 41–51 (1994).
[CrossRef]

D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
[CrossRef]

1993

1992

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

1991

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

1989

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E 22, 297–305 (1989).
[CrossRef]

S. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large 2nd order optical nonlinearities,” Science 245, 626–628 (1989).
[CrossRef] [PubMed]

R. A. Huijts and G. L. J. Hesselink, “Length dependence of the second-order polarizability in conjugated organic molecules,” Chem. Phys. Lett. 126, 209–212 (1989).
[CrossRef]

1988

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, “Nonlinear optical properties of hemicyanine monolayers and the protonation effect,” Chem. Phys. Lett. 147, 420–424 (1988).
[CrossRef]

J. S. Schildkraut, T. L. Penner, C. S. Willand, and A. Ulman, “Absorption and second-harmonic generation of monomer and aggregate hemicyanine dye in Langmuir–Blodgett films,” Opt. Lett. 13, 134–136 (1988).
[CrossRef]

1985

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, “AM1: a new general purpose quantum chemical mechanical molecular model,” J. Am. Chem. Soc. 107, 3902–3909 (1985).
[CrossRef]

1981

A. Dulcic, C. Flytzanis, C. L. Tang, D. Pépin, M. Fétizon, and Y. Hoppilliard, “Length dependence of the second-order optical nonlinearity in conjugated hydrocarbons,” J. Chem. Phys. 74, 1559–1563 (1981).
[CrossRef]

1977

J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67, 446–457 (1977).
[CrossRef]

1975

J. L. Oudar and H. L. Person, “Second-order polarizabilities of some aromatic molecules,” Opt. Commun. 15, 258–262 (1975).
[CrossRef]

1974

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1974).
[CrossRef]

1973

J. Ridley and M. Zerner, “An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines,” Theor. Chim. Acta 32, 111–134 (1973).
[CrossRef]

Beljonne, D.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J.-L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

Brédas, J.-L.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J.-L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
[CrossRef] [PubMed]

Chi, L. F.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, “Nonlinear optical properties of hemicyanine monolayers and the protonation effect,” Chem. Phys. Lett. 147, 420–424 (1988).
[CrossRef]

Choi, L.-S.

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

Clays, K.

G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in long-wavelength hyper-Rayleigh scattering,” Opt. Lett. 24, 403–405 (1999).
[CrossRef]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays, and A. Persoons, “Evaluation of β of stilbazolium p-toluenesulfonates by the hyper-Rayleigh scattering method,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. R. Perry, eds., Proc. SPIE 2143, 41–51 (1994).
[CrossRef]

T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
[CrossRef] [PubMed]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E 22, 297–305 (1989).
[CrossRef]

de Jonge, R.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyperRayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

Dehu, C.

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

Denning, R. G.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

Dewar, M. J. S.

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, “AM1: a new general purpose quantum chemical mechanical molecular model,” J. Am. Chem. Soc. 107, 3902–3909 (1985).
[CrossRef]

Drosch, D.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, “Nonlinear optical properties of hemicyanine monolayers and the protonation effect,” Chem. Phys. Lett. 147, 420–424 (1988).
[CrossRef]

Duan, X.-M.

X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays, and A. Persoons, “Evaluation of β of stilbazolium p-toluenesulfonates by the hyper-Rayleigh scattering method,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. R. Perry, eds., Proc. SPIE 2143, 41–51 (1994).
[CrossRef]

Dulcic, A.

A. Dulcic, C. Flytzanis, C. L. Tang, D. Pépin, M. Fétizon, and Y. Hoppilliard, “Length dependence of the second-order optical nonlinearity in conjugated hydrocarbons,” J. Chem. Phys. 74, 1559–1563 (1981).
[CrossRef]

Enami, Y.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Engelborghs, Y.

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E 22, 297–305 (1989).
[CrossRef]

Erskine, L.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Fétizon, M.

A. Dulcic, C. Flytzanis, C. L. Tang, D. Pépin, M. Fétizon, and Y. Hoppilliard, “Length dependence of the second-order optical nonlinearity in conjugated hydrocarbons,” J. Chem. Phys. 74, 1559–1563 (1981).
[CrossRef]

Flipse, M. C.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyperRayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

Flytzanis, C.

A. Dulcic, C. Flytzanis, C. L. Tang, D. Pépin, M. Fétizon, and Y. Hoppilliard, “Length dependence of the second-order optical nonlinearity in conjugated hydrocarbons,” J. Chem. Phys. 74, 1559–1563 (1981).
[CrossRef]

Guillemet, G.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Healy, E. F.

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, “AM1: a new general purpose quantum chemical mechanical molecular model,” J. Am. Chem. Soc. 107, 3902–3909 (1985).
[CrossRef]

Hendrickx, E.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

Hesselink, G. L. J.

R. A. Huijts and G. L. J. Hesselink, “Length dependence of the second-order polarizability in conjugated organic molecules,” Chem. Phys. Lett. 126, 209–212 (1989).
[CrossRef]

Hoppilliard, Y.

A. Dulcic, C. Flytzanis, C. L. Tang, D. Pépin, M. Fétizon, and Y. Hoppilliard, “Length dependence of the second-order optical nonlinearity in conjugated hydrocarbons,” J. Chem. Phys. 74, 1559–1563 (1981).
[CrossRef]

Huijts, R. A.

R. A. Huijts and G. L. J. Hesselink, “Length dependence of the second-order polarizability in conjugated organic molecules,” Chem. Phys. Lett. 126, 209–212 (1989).
[CrossRef]

Jannes, J.

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E 22, 297–305 (1989).
[CrossRef]

Jenneskens, L. W.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyperRayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

Kanis, D. R.

D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
[CrossRef]

Kim, O.-K.

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

Kippelen, B.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Kogej, T.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J.-L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

Laidlaw, W. M.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

Maldonado, J. L.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Marder, S.

S. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large 2nd order optical nonlinearities,” Science 245, 626–628 (1989).
[CrossRef] [PubMed]

Marder, S. R.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J.-L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Marks, T. J.

D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
[CrossRef]

Marowsky, G.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, “Nonlinear optical properties of hemicyanine monolayers and the protonation effect,” Chem. Phys. Lett. 147, 420–424 (1988).
[CrossRef]

Marsman, A. W.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyperRayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

Matsuda, M.

X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays, and A. Persoons, “Evaluation of β of stilbazolium p-toluenesulfonates by the hyper-Rayleigh scattering method,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. R. Perry, eds., Proc. SPIE 2143, 41–51 (1994).
[CrossRef]

Meyers, F.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J.-L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
[CrossRef] [PubMed]

Möbius, D.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, “Nonlinear optical properties of hemicyanine monolayers and the protonation effect,” Chem. Phys. Lett. 147, 420–424 (1988).
[CrossRef]

Morrison, I. D.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

Munters, T.

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

Nakanishi, H.

X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays, and A. Persoons, “Evaluation of β of stilbazolium p-toluenesulfonates by the hyper-Rayleigh scattering method,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. R. Perry, eds., Proc. SPIE 2143, 41–51 (1994).
[CrossRef]

Okada, S.

X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays, and A. Persoons, “Evaluation of β of stilbazolium p-toluenesulfonates by the hyper-Rayleigh scattering method,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. R. Perry, eds., Proc. SPIE 2143, 41–51 (1994).
[CrossRef]

Olbrechts, G.

G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in long-wavelength hyper-Rayleigh scattering,” Opt. Lett. 24, 403–405 (1999).
[CrossRef]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

Orr, B. J.

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1974).
[CrossRef]

Oudar, J. L.

J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67, 446–457 (1977).
[CrossRef]

J. L. Oudar and H. L. Person, “Second-order polarizabilities of some aromatic molecules,” Opt. Commun. 15, 258–262 (1975).
[CrossRef]

Penner, T. L.

Pépin, D.

A. Dulcic, C. Flytzanis, C. L. Tang, D. Pépin, M. Fétizon, and Y. Hoppilliard, “Length dependence of the second-order optical nonlinearity in conjugated hydrocarbons,” J. Chem. Phys. 74, 1559–1563 (1981).
[CrossRef]

Perry, J. W.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J.-L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

S. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large 2nd order optical nonlinearities,” Science 245, 626–628 (1989).
[CrossRef] [PubMed]

Person, H. L.

J. L. Oudar and H. L. Person, “Second-order polarizabilities of some aromatic molecules,” Opt. Commun. 15, 258–262 (1975).
[CrossRef]

Persoons, A.

G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in long-wavelength hyper-Rayleigh scattering,” Opt. Lett. 24, 403–405 (1999).
[CrossRef]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays, and A. Persoons, “Evaluation of β of stilbazolium p-toluenesulfonates by the hyper-Rayleigh scattering method,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. R. Perry, eds., Proc. SPIE 2143, 41–51 (1994).
[CrossRef]

T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
[CrossRef] [PubMed]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E 22, 297–305 (1989).
[CrossRef]

Peyghambarian, N.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Ratner, M. A.

D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
[CrossRef]

Ridley, J.

J. Ridley and M. Zerner, “An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines,” Theor. Chim. Acta 32, 111–134 (1973).
[CrossRef]

Rieger, B.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, “Nonlinear optical properties of hemicyanine monolayers and the protonation effect,” Chem. Phys. Lett. 147, 420–424 (1988).
[CrossRef]

Röckel, H.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Sandalphon,

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Schaefer, W. P.

S. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large 2nd order optical nonlinearities,” Science 245, 626–628 (1989).
[CrossRef] [PubMed]

Schildkraut, J. S.

Shen, Y. R.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, “Nonlinear optical properties of hemicyanine monolayers and the protonation effect,” Chem. Phys. Lett. 147, 420–424 (1988).
[CrossRef]

Stammers, M. A.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

Steele, D. D.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Steinhoff, R.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, “Nonlinear optical properties of hemicyanine monolayers and the protonation effect,” Chem. Phys. Lett. 147, 420–424 (1988).
[CrossRef]

Stewart, J. J. P.

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, “AM1: a new general purpose quantum chemical mechanical molecular model,” J. Am. Chem. Soc. 107, 3902–3909 (1985).
[CrossRef]

Strobbe, R.

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

Tang, C. L.

A. Dulcic, C. Flytzanis, C. L. Tang, D. Pépin, M. Fétizon, and Y. Hoppilliard, “Length dependence of the second-order optical nonlinearity in conjugated hydrocarbons,” J. Chem. Phys. 74, 1559–1563 (1981).
[CrossRef]

Ulman, A.

van Walree, C. A.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyperRayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

Verbiest, T.

Volodin, B. L.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Wang, J. F.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Ward, J. F.

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1974).
[CrossRef]

Watanabe, A.

X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays, and A. Persoons, “Evaluation of β of stilbazolium p-toluenesulfonates by the hyper-Rayleigh scattering method,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. R. Perry, eds., Proc. SPIE 2143, 41–51 (1994).
[CrossRef]

Willand, C. S.

Wostyn, K.

Woudenberg, R. H.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyperRayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

Yao, Y. J.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

Zerner, M.

J. Ridley and M. Zerner, “An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines,” Theor. Chim. Acta 32, 111–134 (1973).
[CrossRef]

Zoebisch, E. G.

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, “AM1: a new general purpose quantum chemical mechanical molecular model,” J. Am. Chem. Soc. 107, 3902–3909 (1985).
[CrossRef]

Chem. Phys. Lett.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyperRayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

R. A. Huijts and G. L. J. Hesselink, “Length dependence of the second-order polarizability in conjugated organic molecules,” Chem. Phys. Lett. 126, 209–212 (1989).
[CrossRef]

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J.-L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, “Nonlinear optical properties of hemicyanine monolayers and the protonation effect,” Chem. Phys. Lett. 147, 420–424 (1988).
[CrossRef]

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

Chem. Rev.

D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
[CrossRef]

J. Am. Chem. Soc.

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, “AM1: a new general purpose quantum chemical mechanical molecular model,” J. Am. Chem. Soc. 107, 3902–3909 (1985).
[CrossRef]

J. Chem. Phys.

J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67, 446–457 (1977).
[CrossRef]

A. Dulcic, C. Flytzanis, C. L. Tang, D. Pépin, M. Fétizon, and Y. Hoppilliard, “Length dependence of the second-order optical nonlinearity in conjugated hydrocarbons,” J. Chem. Phys. 74, 1559–1563 (1981).
[CrossRef]

J. Phys. E

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E 22, 297–305 (1989).
[CrossRef]

Mol. Phys.

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1974).
[CrossRef]

Opt. Commun.

J. L. Oudar and H. L. Person, “Second-order polarizabilities of some aromatic molecules,” Opt. Commun. 15, 258–262 (1975).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

Proc. SPIE

X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays, and A. Persoons, “Evaluation of β of stilbazolium p-toluenesulfonates by the hyper-Rayleigh scattering method,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. R. Perry, eds., Proc. SPIE 2143, 41–51 (1994).
[CrossRef]

Rev. Sci. Instrum.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

Science

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
[CrossRef] [PubMed]

S. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large 2nd order optical nonlinearities,” Science 245, 626–628 (1989).
[CrossRef] [PubMed]

Theor. Chim. Acta

J. Ridley and M. Zerner, “An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines,” Theor. Chim. Acta 32, 111–134 (1973).
[CrossRef]

Other

H. Nakanishi, H. Matsuda, S. Okada, and M. Kato, “Organic and polymeric ion-complexes for nonlinear optics,” in Materials Research Society International Meeting on Advanced Materials, M. Doyama, S. Somiya, and R. P. H. Chang, eds. (Materials Research Society, Pittsburgh, Pa., 1989), Vol. 1, pp. 97–104.

G. R. Meredith, “Design and characterization of molecular and polymeric nonlinear optical materials: successes and pitfalls,” Nonlinear Optical Properties of Organic and Polymeric Materials, Vol. 233 of ACS Symposium Series, D. J. Williams, ed. (American Chemical Society, Washington, D.C., 1983), pp. 27–56.

K. Nogi, M.S. thesis (Tohoku University, Sendai, Japan, 1999) (in Japanese).

K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, Vol. 85 of Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, New York, 1994), Pt. 3, pp. 455–498.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Parent structure of the measured chromophore. The chromophores are DAST homologues of increasing conjugation length denoted by n. The value of n refers to the number of ethenyl groups in the chromophore. Five chromophores were measured from n=1 to n=5.

Fig. 2
Fig. 2

Plot of the absorption spectra of the five measured chromophores. (Solid curve, n=1; long-dashed curve, n=2; medium-dashed curve, n=3; short-dashed curve, n=4; dotted-dashed curve, n=5). The solvent used was chloroform. ε is the molar extinction coefficient.

Fig. 3
Fig. 3

HRS demodulation curve of chromophore 3. The apparent hyperpolarizability value β (10-30 esu) is plotted as a function of the measurement frequency, in megahertz. The solid curve is the fitted curve obtained from the single-exponential model in which the fluorescence lifetime is floating as well.

Fig. 4
Fig. 4

HRS demodulation curve of chromophore 1. The apparent hyperpolarizability value β (10-30 esu) is plotted as a function of the measurement frequency, in megahertz. The solid curve is the fitted curve obtained from the double-exponential model in which all the parameters are floating.

Fig. 5
Fig. 5

HRS demodulation curve of chromophore 5. No demodulation is observed, resulting in an assumed fluorescence-free hyperpolarizability value of 1200×10-30 esu.

Fig. 6
Fig. 6

Comparison of dynamic (1300-nm) but uncorrected apparent hyperpolarizability values (including fluorescence contribution, ×); dynamic (1300-nm) but corrected, fluorescence-free, inherent hyperpolarizability (+); static (calculated by the two-level model) and fluorescence-free hyperpolarizability (○); and calculated static hyperpolarizability (△) values.

Tables (3)

Tables Icon

Table 1 Results of the Data Analysis of HRS at a 1300-nm Fundamental Wavelength According to Different Models, as Indicateda

Tables Icon

Table 2 Results of the Data Analysis of SPC at a 650-nm Emission Wavelength, for a Given Concentration

Tables Icon

Table 3 Retrieved Hyperpolarizability Values β at 1300 nm in Chloroform, as Well as the Dispersion-Free β0 Values, Obtained from the Two-Level Model and Derived from the Entries Given in Boldface in Table 1a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

QC=I(2ω)I(ω)2=g(Nsβs2+NSβS2).
βapp=β2+X2M.
I(t)=iai exp(-t/τi),
S(ω)=0I(t)sin(ωt)dt=ifi cos φi sin φiwithfi=aiτijajτj,
G(ω)=0I(t)cos(ωt)dt=ifi cos2 φiwithtan φi=(ωτi).
tan(φ)=S/Gwithφ=f(φ1, , φi),
M=S2+G2.
M=11+(ωτ)21/2.
M=i=1nfi cos2[bgtg(ωτi)]2+i=1nfi cos[bgtg(ωτi)]sin[bgtg(ωτi)]21/2.

Metrics