Abstract

A simple input–output formalism based on the Lorentz reciprocity theorem is presented for the study of a classical radiating dipole near a lossless interface. The problems of dipole absorption, fluorescence, and scattering are considered in a unified description, and the effects of the interface (a simple dielectric here) are shown to be broadly twofold. First, the channeling of radiation into and out of the dipole is modified. Second, the intrinsic dipole polarizability is found to be modified, leading to an effective absorption (or scattering) cross section that depends on the states of both the dipole and the driving field. These results are particularly applicable to studies involving evanescent-wave microscopy.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Axelrod, E. H. Hellen, and R. M. Fulbright, “Total internal reflection fluorescence,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1992), Vol. 3, p. 289.
  2. M. Oheim, D. Loerke, R. H. Chow, and W. Stühmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. London, Ser. B 354, 307–318 (1999).
    [CrossRef] [PubMed]
  3. N. L. Thompson, H. M. McConnell, and T. P. Burghardt, “Order in supported phospholipid monolayers detected by dichroism of fluorescence excited with polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
    [CrossRef] [PubMed]
  4. S. E. Sund, J. A. Swanson, and D. Axelrod, “Cell membrane orientation visualized by polarized total internal reflection fluorescence,” Biophys. J. 77, 2266–2283 (1999).
    [CrossRef] [PubMed]
  5. J. A. Steyer, H. Horstmann, and W. Almers, “Transport, docking, and exocytosis of single secretory granules in live chromaffin cells,” Nature 388, 474–478 (1997).
    [CrossRef] [PubMed]
  6. M. Oheim, D. Loerke, W. Stühmer, and R. H. Chow, “Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles,” Eur. Biophys. J. 28, 91–101 (1999).
    [CrossRef] [PubMed]
  7. W. M. Reichert, P. A. Suci, J. T. Ives, and J. D. Andrade, “Evanescent detection of adsorbed protein concentration–distance profiles: fit of simple models to variable-angle to-tal internal refection fluorescence data,” Appl. Spectrosc. 41, 503–508 (1987).
    [CrossRef]
  8. R. Swaminathan, S. Bicknese, N. Periasamy, and A. S. Verkman, “Cytoplasmic viscosity near the cell plasma-membrane—translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery,” Biophys. J. 71, 1140–1151 (1996).
    [CrossRef] [PubMed]
  9. B. P. Ölveczky, N. Periasamy, and A. S. Verkman, “Mapping fluorophore distributions in three dimensions by quantitative multiple angle–total internal reflection fluorescence microscopy,” Biophys. J. 73, 2836–2847 (1997).
    [CrossRef]
  10. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
    [CrossRef] [PubMed]
  11. R. M. Dickson, D. J. Norris, and W. E. Moerner, “Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis,” Phys. Rev. Lett. 81, 5322–5325 (1998).
    [CrossRef]
  12. C. K. Carniglia, L. Mandel, and K. H. Drexhage, “Absorption and emission of evanescent photons,” J. Opt. Soc. Am. 62, 479–486 (1972).
    [CrossRef]
  13. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1980).
  14. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979).
    [CrossRef]
  15. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
    [CrossRef]
  16. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, I. Prigodine and S. A. Rice, eds. (Wiley, New York, 1978), Vol. 37, pp. 1–65.
  17. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
    [CrossRef]
  18. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. I. Total radiated power,” J. Opt. Soc. Am. 67, 1607–1615 (1977).
    [CrossRef]
  19. E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal–film interfaces,” J. Opt. Soc. Am. B 4, 337–350 (1987).
    [CrossRef]
  20. M. Oheim, D. Loerke, B. Preitz, and W. Stühmer, “A simple optical configuration for depth-resolved imaging using variable-angle evanescent-wave microscopy,” Proc. SPIE 3568, 131–140 (1998).
    [CrossRef]
  21. M. Nieto-Vesperinas and E. Wolf, “Generalized Stokes reciprocity relations for scattering from dielectric objects of arbitrary shape,” J. Opt. Soc. Am. A 3, 2038–2046 (1986).
    [CrossRef]
  22. J.-Y. Courtois, J.-M. Courty, and J. Mertz, “Internal dynamics of multilevel atoms near a vacuum–dielectric interface,” Phys. Rev. A 53, 1862–1878 (1996).
    [CrossRef] [PubMed]
  23. C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27, 1965–1979 (1983).
    [CrossRef]
  24. P. Ye and Y. R. Shen, “Local-field effect on linear and nonlinear optical properties of adsorbed molecules,” J. Opt. Soc. Am. B 28, 4288–4294 (1983).
  25. R. R. Chance, A. Prock, and R. Silbey, “Frequency shifts of an electric-dipole transition near a partially reflecting surface,” Phys. Rev. A 12, 1448–1452 (1975).
    [CrossRef]
  26. R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–238 (1994).
    [CrossRef]

1999 (3)

M. Oheim, D. Loerke, R. H. Chow, and W. Stühmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. London, Ser. B 354, 307–318 (1999).
[CrossRef] [PubMed]

S. E. Sund, J. A. Swanson, and D. Axelrod, “Cell membrane orientation visualized by polarized total internal reflection fluorescence,” Biophys. J. 77, 2266–2283 (1999).
[CrossRef] [PubMed]

M. Oheim, D. Loerke, W. Stühmer, and R. H. Chow, “Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles,” Eur. Biophys. J. 28, 91–101 (1999).
[CrossRef] [PubMed]

1998 (2)

M. Oheim, D. Loerke, B. Preitz, and W. Stühmer, “A simple optical configuration for depth-resolved imaging using variable-angle evanescent-wave microscopy,” Proc. SPIE 3568, 131–140 (1998).
[CrossRef]

R. M. Dickson, D. J. Norris, and W. E. Moerner, “Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis,” Phys. Rev. Lett. 81, 5322–5325 (1998).
[CrossRef]

1997 (2)

B. P. Ölveczky, N. Periasamy, and A. S. Verkman, “Mapping fluorophore distributions in three dimensions by quantitative multiple angle–total internal reflection fluorescence microscopy,” Biophys. J. 73, 2836–2847 (1997).
[CrossRef]

J. A. Steyer, H. Horstmann, and W. Almers, “Transport, docking, and exocytosis of single secretory granules in live chromaffin cells,” Nature 388, 474–478 (1997).
[CrossRef] [PubMed]

1996 (2)

R. Swaminathan, S. Bicknese, N. Periasamy, and A. S. Verkman, “Cytoplasmic viscosity near the cell plasma-membrane—translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery,” Biophys. J. 71, 1140–1151 (1996).
[CrossRef] [PubMed]

J.-Y. Courtois, J.-M. Courty, and J. Mertz, “Internal dynamics of multilevel atoms near a vacuum–dielectric interface,” Phys. Rev. A 53, 1862–1878 (1996).
[CrossRef] [PubMed]

1995 (1)

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

1994 (1)

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–238 (1994).
[CrossRef]

1987 (2)

1986 (1)

1984 (1)

N. L. Thompson, H. M. McConnell, and T. P. Burghardt, “Order in supported phospholipid monolayers detected by dichroism of fluorescence excited with polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
[CrossRef] [PubMed]

1983 (2)

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27, 1965–1979 (1983).
[CrossRef]

P. Ye and Y. R. Shen, “Local-field effect on linear and nonlinear optical properties of adsorbed molecules,” J. Opt. Soc. Am. B 28, 4288–4294 (1983).

1979 (1)

1977 (1)

1975 (1)

R. R. Chance, A. Prock, and R. Silbey, “Frequency shifts of an electric-dipole transition near a partially reflecting surface,” Phys. Rev. A 12, 1448–1452 (1975).
[CrossRef]

1974 (2)

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

1972 (1)

Almers, W.

J. A. Steyer, H. Horstmann, and W. Almers, “Transport, docking, and exocytosis of single secretory granules in live chromaffin cells,” Nature 388, 474–478 (1997).
[CrossRef] [PubMed]

Andrade, J. D.

Aspect, A.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–238 (1994).
[CrossRef]

Axelrod, D.

S. E. Sund, J. A. Swanson, and D. Axelrod, “Cell membrane orientation visualized by polarized total internal reflection fluorescence,” Biophys. J. 77, 2266–2283 (1999).
[CrossRef] [PubMed]

E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal–film interfaces,” J. Opt. Soc. Am. B 4, 337–350 (1987).
[CrossRef]

Bicknese, S.

R. Swaminathan, S. Bicknese, N. Periasamy, and A. S. Verkman, “Cytoplasmic viscosity near the cell plasma-membrane—translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery,” Biophys. J. 71, 1140–1151 (1996).
[CrossRef] [PubMed]

Burghardt, T. P.

N. L. Thompson, H. M. McConnell, and T. P. Burghardt, “Order in supported phospholipid monolayers detected by dichroism of fluorescence excited with polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
[CrossRef] [PubMed]

Carniglia, C. K.

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Frequency shifts of an electric-dipole transition near a partially reflecting surface,” Phys. Rev. A 12, 1448–1452 (1975).
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

Chen, C. K.

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27, 1965–1979 (1983).
[CrossRef]

Chow, R. H.

M. Oheim, D. Loerke, R. H. Chow, and W. Stühmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. London, Ser. B 354, 307–318 (1999).
[CrossRef] [PubMed]

M. Oheim, D. Loerke, W. Stühmer, and R. H. Chow, “Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles,” Eur. Biophys. J. 28, 91–101 (1999).
[CrossRef] [PubMed]

Courtois, J.-Y.

J.-Y. Courtois, J.-M. Courty, and J. Mertz, “Internal dynamics of multilevel atoms near a vacuum–dielectric interface,” Phys. Rev. A 53, 1862–1878 (1996).
[CrossRef] [PubMed]

Courty, J.-M.

J.-Y. Courtois, J.-M. Courty, and J. Mertz, “Internal dynamics of multilevel atoms near a vacuum–dielectric interface,” Phys. Rev. A 53, 1862–1878 (1996).
[CrossRef] [PubMed]

Dickson, R. M.

R. M. Dickson, D. J. Norris, and W. E. Moerner, “Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis,” Phys. Rev. Lett. 81, 5322–5325 (1998).
[CrossRef]

Drexhage, K. H.

Funatsu, T.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

Harada, Y.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

Heinz, T. F.

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27, 1965–1979 (1983).
[CrossRef]

Hellen, E. H.

Horstmann, H.

J. A. Steyer, H. Horstmann, and W. Almers, “Transport, docking, and exocytosis of single secretory granules in live chromaffin cells,” Nature 388, 474–478 (1997).
[CrossRef] [PubMed]

Ives, J. T.

Kaiser, R.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–238 (1994).
[CrossRef]

Kunz, R. E.

Leipold, D.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–238 (1994).
[CrossRef]

Lévy, Y.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–238 (1994).
[CrossRef]

Loerke, D.

M. Oheim, D. Loerke, R. H. Chow, and W. Stühmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. London, Ser. B 354, 307–318 (1999).
[CrossRef] [PubMed]

M. Oheim, D. Loerke, W. Stühmer, and R. H. Chow, “Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles,” Eur. Biophys. J. 28, 91–101 (1999).
[CrossRef] [PubMed]

M. Oheim, D. Loerke, B. Preitz, and W. Stühmer, “A simple optical configuration for depth-resolved imaging using variable-angle evanescent-wave microscopy,” Proc. SPIE 3568, 131–140 (1998).
[CrossRef]

Lukosz, W.

Mandel, L.

McConnell, H. M.

N. L. Thompson, H. M. McConnell, and T. P. Burghardt, “Order in supported phospholipid monolayers detected by dichroism of fluorescence excited with polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
[CrossRef] [PubMed]

Mertz, J.

J.-Y. Courtois, J.-M. Courty, and J. Mertz, “Internal dynamics of multilevel atoms near a vacuum–dielectric interface,” Phys. Rev. A 53, 1862–1878 (1996).
[CrossRef] [PubMed]

Mlynek, J.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–238 (1994).
[CrossRef]

Moerner, W. E.

R. M. Dickson, D. J. Norris, and W. E. Moerner, “Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis,” Phys. Rev. Lett. 81, 5322–5325 (1998).
[CrossRef]

Nieto-Vesperinas, M.

Norris, D. J.

R. M. Dickson, D. J. Norris, and W. E. Moerner, “Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis,” Phys. Rev. Lett. 81, 5322–5325 (1998).
[CrossRef]

Oheim, M.

M. Oheim, D. Loerke, W. Stühmer, and R. H. Chow, “Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles,” Eur. Biophys. J. 28, 91–101 (1999).
[CrossRef] [PubMed]

M. Oheim, D. Loerke, R. H. Chow, and W. Stühmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. London, Ser. B 354, 307–318 (1999).
[CrossRef] [PubMed]

M. Oheim, D. Loerke, B. Preitz, and W. Stühmer, “A simple optical configuration for depth-resolved imaging using variable-angle evanescent-wave microscopy,” Proc. SPIE 3568, 131–140 (1998).
[CrossRef]

Ölveczky, B. P.

B. P. Ölveczky, N. Periasamy, and A. S. Verkman, “Mapping fluorophore distributions in three dimensions by quantitative multiple angle–total internal reflection fluorescence microscopy,” Biophys. J. 73, 2836–2847 (1997).
[CrossRef]

Periasamy, N.

B. P. Ölveczky, N. Periasamy, and A. S. Verkman, “Mapping fluorophore distributions in three dimensions by quantitative multiple angle–total internal reflection fluorescence microscopy,” Biophys. J. 73, 2836–2847 (1997).
[CrossRef]

R. Swaminathan, S. Bicknese, N. Periasamy, and A. S. Verkman, “Cytoplasmic viscosity near the cell plasma-membrane—translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery,” Biophys. J. 71, 1140–1151 (1996).
[CrossRef] [PubMed]

Preitz, B.

M. Oheim, D. Loerke, B. Preitz, and W. Stühmer, “A simple optical configuration for depth-resolved imaging using variable-angle evanescent-wave microscopy,” Proc. SPIE 3568, 131–140 (1998).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Frequency shifts of an electric-dipole transition near a partially reflecting surface,” Phys. Rev. A 12, 1448–1452 (1975).
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

Reichert, W. M.

Ricard, D.

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27, 1965–1979 (1983).
[CrossRef]

Saito, K.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

Seifert, W.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–238 (1994).
[CrossRef]

Shen, Y. R.

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27, 1965–1979 (1983).
[CrossRef]

P. Ye and Y. R. Shen, “Local-field effect on linear and nonlinear optical properties of adsorbed molecules,” J. Opt. Soc. Am. B 28, 4288–4294 (1983).

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Frequency shifts of an electric-dipole transition near a partially reflecting surface,” Phys. Rev. A 12, 1448–1452 (1975).
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

Steyer, J. A.

J. A. Steyer, H. Horstmann, and W. Almers, “Transport, docking, and exocytosis of single secretory granules in live chromaffin cells,” Nature 388, 474–478 (1997).
[CrossRef] [PubMed]

Stühmer, W.

M. Oheim, D. Loerke, R. H. Chow, and W. Stühmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. London, Ser. B 354, 307–318 (1999).
[CrossRef] [PubMed]

M. Oheim, D. Loerke, W. Stühmer, and R. H. Chow, “Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles,” Eur. Biophys. J. 28, 91–101 (1999).
[CrossRef] [PubMed]

M. Oheim, D. Loerke, B. Preitz, and W. Stühmer, “A simple optical configuration for depth-resolved imaging using variable-angle evanescent-wave microscopy,” Proc. SPIE 3568, 131–140 (1998).
[CrossRef]

Suci, P. A.

Sund, S. E.

S. E. Sund, J. A. Swanson, and D. Axelrod, “Cell membrane orientation visualized by polarized total internal reflection fluorescence,” Biophys. J. 77, 2266–2283 (1999).
[CrossRef] [PubMed]

Swaminathan, R.

R. Swaminathan, S. Bicknese, N. Periasamy, and A. S. Verkman, “Cytoplasmic viscosity near the cell plasma-membrane—translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery,” Biophys. J. 71, 1140–1151 (1996).
[CrossRef] [PubMed]

Swanson, J. A.

S. E. Sund, J. A. Swanson, and D. Axelrod, “Cell membrane orientation visualized by polarized total internal reflection fluorescence,” Biophys. J. 77, 2266–2283 (1999).
[CrossRef] [PubMed]

Thompson, N. L.

N. L. Thompson, H. M. McConnell, and T. P. Burghardt, “Order in supported phospholipid monolayers detected by dichroism of fluorescence excited with polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
[CrossRef] [PubMed]

Tokunaga, M.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

Vansteenkiste, N.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–238 (1994).
[CrossRef]

Verkman, A. S.

B. P. Ölveczky, N. Periasamy, and A. S. Verkman, “Mapping fluorophore distributions in three dimensions by quantitative multiple angle–total internal reflection fluorescence microscopy,” Biophys. J. 73, 2836–2847 (1997).
[CrossRef]

R. Swaminathan, S. Bicknese, N. Periasamy, and A. S. Verkman, “Cytoplasmic viscosity near the cell plasma-membrane—translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery,” Biophys. J. 71, 1140–1151 (1996).
[CrossRef] [PubMed]

Wolf, E.

Yanagida, T.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

Ye, P.

P. Ye and Y. R. Shen, “Local-field effect on linear and nonlinear optical properties of adsorbed molecules,” J. Opt. Soc. Am. B 28, 4288–4294 (1983).

Appl. Spectrosc. (1)

Biophys. J. (4)

N. L. Thompson, H. M. McConnell, and T. P. Burghardt, “Order in supported phospholipid monolayers detected by dichroism of fluorescence excited with polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
[CrossRef] [PubMed]

S. E. Sund, J. A. Swanson, and D. Axelrod, “Cell membrane orientation visualized by polarized total internal reflection fluorescence,” Biophys. J. 77, 2266–2283 (1999).
[CrossRef] [PubMed]

R. Swaminathan, S. Bicknese, N. Periasamy, and A. S. Verkman, “Cytoplasmic viscosity near the cell plasma-membrane—translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery,” Biophys. J. 71, 1140–1151 (1996).
[CrossRef] [PubMed]

B. P. Ölveczky, N. Periasamy, and A. S. Verkman, “Mapping fluorophore distributions in three dimensions by quantitative multiple angle–total internal reflection fluorescence microscopy,” Biophys. J. 73, 2836–2847 (1997).
[CrossRef]

Eur. Biophys. J. (1)

M. Oheim, D. Loerke, W. Stühmer, and R. H. Chow, “Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles,” Eur. Biophys. J. 28, 91–101 (1999).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal–film interfaces,” J. Opt. Soc. Am. B 4, 337–350 (1987).
[CrossRef]

P. Ye and Y. R. Shen, “Local-field effect on linear and nonlinear optical properties of adsorbed molecules,” J. Opt. Soc. Am. B 28, 4288–4294 (1983).

Nature (2)

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

J. A. Steyer, H. Horstmann, and W. Almers, “Transport, docking, and exocytosis of single secretory granules in live chromaffin cells,” Nature 388, 474–478 (1997).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–238 (1994).
[CrossRef]

Philos. Trans. R. Soc. London, Ser. B (1)

M. Oheim, D. Loerke, R. H. Chow, and W. Stühmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. London, Ser. B 354, 307–318 (1999).
[CrossRef] [PubMed]

Phys. Rev. A (2)

R. R. Chance, A. Prock, and R. Silbey, “Frequency shifts of an electric-dipole transition near a partially reflecting surface,” Phys. Rev. A 12, 1448–1452 (1975).
[CrossRef]

J.-Y. Courtois, J.-M. Courty, and J. Mertz, “Internal dynamics of multilevel atoms near a vacuum–dielectric interface,” Phys. Rev. A 53, 1862–1878 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (1)

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27, 1965–1979 (1983).
[CrossRef]

Phys. Rev. Lett. (1)

R. M. Dickson, D. J. Norris, and W. E. Moerner, “Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis,” Phys. Rev. Lett. 81, 5322–5325 (1998).
[CrossRef]

Proc. SPIE (1)

M. Oheim, D. Loerke, B. Preitz, and W. Stühmer, “A simple optical configuration for depth-resolved imaging using variable-angle evanescent-wave microscopy,” Proc. SPIE 3568, 131–140 (1998).
[CrossRef]

Prog. Opt. (1)

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
[CrossRef]

Other (3)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, I. Prigodine and S. A. Rice, eds. (Wiley, New York, 1978), Vol. 37, pp. 1–65.

D. Axelrod, E. H. Hellen, and R. M. Fulbright, “Total internal reflection fluorescence,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1992), Vol. 3, p. 289.

M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Interface (horizontal z=0 plane) separates two half-spaces of refractive indices n1 (above) and n2 (below). A dipole (P) located at z=z0 is driven by an input wave directed along θin. The resultant scattered radiation or fluorescence from the dipole is observed along an output direction Ω, identified by φ (relative to the input plane) and θ.

Fig. 2
Fig. 2

Radiation pattern for a dipole located a distance (a) z0=0 and (b) z0=λ1 from a dielectric surface (n1=1;n2=1.5). The dipole is inclined 45° from vertical. The dotted lines represent the critical angle θc separating zones II and III. The dashed curves represent the radiation pattern for the same dipole in a homogeneous medium (n1=n2), for comparison. Note the decay of radiation in zone II as a function of z0.

Fig. 3
Fig. 3

Total radiated power of a fixed-amplitude dipole near an interface as a function of the dipole-interface separation (n1=1;n2=1.5). The radiated power is normalized to that of the same dipole in the absence of the interface. The separation z0 is normalized to the wavelength. Illustrations are shown for a dipole parallel (N) and perpendicular (N) to the interface. The contributions to N and N from the emitted powers in zones I, II, and III are identified separately. The emitted power decays rapidly with separation in zone II, whereas it is independent of separation in zone III.

Fig. 4
Fig. 4

Total absorption (or scattering) cross sections of an isotropically polarizable dipole resting on a dielectric surface (n1=1;n2=1.5) as a function of the input direction θin of an s- or p-polarized driving field of fixed intensity. The cross sections are normalized to those of a dipole in a homogeneous medium (n1=n2) for the same input field. The dotted grid lines represent directions along the interface (90°) where absorption is forbidden and along the critical angle (θc) where absorption is significantly enhanced.

Equations (52)

Equations on this page are rendered with MathJax. Learn more.

Ein=EinsEinp
Iin=120cnin|Ein|2,
EΩ=EΩsEΩp,
SΩ=120cnΩr2|EΩ|2,
dσdΩ=SΩIin,
Sout=Iin dσdΩ dΩ=σIin,
Ed=K(θin)Ein.
P=0AEd,
EΩ=1rηK(Ω)P,
r(s, p)=n(1, 2) cos(θ1)-n(2, 1) cos(θ2)n(1, 2) cos(θ1)+n(2, 1) cos(θ2),
t(s, p)=2n2 cos θ2n(1, 2) cos(θ1)+n(2, 1) cos(θ2),
Ed=EpEsEp,
K(θin)=0Kp(θin)Ks(θin)00Kp(θin),
Kp(θin)=cos θ1[-exp(-ik1z0 cos θ1)+rp exp(ik1z0 cos θ1)],
Ks(θin)=exp(-ik1z0 cos θ1)+rs exp(ik1z0 cos θ1),
Kp(θin)=sin θ1[-exp(-ik1z0 cos θ1)-rp exp(ik1z0 cos θ1)],
Kp(θin)=-tp cos θ1 exp(ik1 z0 cos θ1),
Ks(θin)=ts exp(ik1z0 cos θ1),
Kp(θin)=tp sin θ1 exp(ik1z0 cos θ1),
K(Ω)=K˜(θ)R(φ),
R(φ)=cos φsin φ0-sin φcos φ0001.
Ls(θin)=n1nin|Ks(θin)|2,
Ls(θ)=nΩn1|Ks(θ)|2,
Ls,p(Ω)=Ls(θ)sin2 φ+Lp(θ)cos2 φ,
L×p(θin)=n1nΩKp(θin)Kp(θin)*,
L×p(Ω)=nΩn1Kp(θ)Kp(θ)* cos φ.
EΩ=ηp0-Ks(θ) sin φ sin ϕKp(θ)cos φ sin ϕ+Kp(θ) cos ϕ,
SΩ=120cn1η2p02Lϕ(Ω),
Lϕ(Ω)=Ls,p(Ω)sin2 ϕ+Lp(θ) cos2 ϕ+Re[L×p(Ω)] sin 2ϕ.
Lrand(θ)=13[Ls(θ)+Lp(θ)+Lp(θ)].
Sout=SΩdΩ.
(n2=n1)L,s(θ)=1L,p(θ)=cos2 θL,p(θ)=sin2 θ,
Nϕ=SoutS,out=38π Lϕ(Ω)dΩ.
a(ω)=a0ω0γω02-ω2-iωγ,
α,(ω)=a0ω0γω02-ω2-iωγ,,
γ,=N,γ,
N=38 0π[Ls(θ)+Lp(θ)]sin θdθ,
N=34 0πLp(θ)sin θdθ;
Aia0N-1000N-1000N-1,
Sout=ω2 Im[P*·Ed],
Sout(s)=ω02 ninn1 Im[α]Ls(θin)|Eins|2,
Sout(p)=ω02 ninn1[Im[α]Lp(θin)+Im[α]Lp(θ)]|Einp|2.
σ(s)=σN-1Ls(θin),
σ(p)=σ[N-1Lp(θin)+N-1Lp(θin)],
dσ(s)dΩ=3σ8πLp,s(Ω)N-2Ls(θin),
dσ(p)dΩ=3σ8π{Ls,p(Ω)N-2Lp(θin)+Lp(Ω)N-2Lp(θin)+2N-1N-1 Re[L×p(Ω)L×p(θin)]}.
Eout(Ωb)1r S(Ωb, Ωa)Ein(Ωa),
S(Ωa, Ωb)=S˜(Ωb, Ωa).
Eout(Ωb)f(λ, r)K(Ωb)0AK(Ωa)Ein(Ωa),
f(λ, r)(0λ2r)-1.
K(Ωb)AK(Ωa)=[K(Ωa)A˜K(Ωb)].
K(Ω)=K˜(Ω)

Metrics