Abstract

By combining detailed imaging measurements at different tilt angles with simulations of ray emission from prolate-deformed lasing microdroplets, we conclude that the dominant contribution to the laser emission of such three-dimensional dielectric microcavities must come from modes associated with the chaotic region of the ray phase space. As a particularly striking signature, maximum emission from such chaotic lasing modes is not from tangent rays emerging from the highest curvature part of the rim. The laser emission is observed and calculated to be nontangent and displaced from the highest curvature regions owing to the presence of stable orbits. In this paper we present the first experimental evidence for this phenomenon of dynamical eclipsing.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription